大学物理上、下册重点知识总结_第1页
大学物理上、下册重点知识总结_第2页
大学物理上、下册重点知识总结_第3页
大学物理上、下册重点知识总结_第4页
大学物理上、下册重点知识总结_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、五机械振动知识点:1、简谐运动微分方程:+ cc2 x =0,弹簧振子F=-kx, co ,单摆co = dt; m振动方程:x=Acos(cct+®) 振幅A,相位(cot +巾),初相位* ,角频率0。切=J = 24。周期T,频率不。T切由振动系统本身参数所确定;A、4可由初始条件确定:2f、2 0 V0 A xV0A=x0 +-,1=arctan -;0i«21与小:2由旋转矢量法确定初相:初始条件:t=01)由x0 = AA = A cos * cos*1% v0 = 0得 =02)由0x0 = 0“v0 <0COS* = 0* = n /v0 = -A s

2、in 0, sin 0得3)由,=-:/ 2xr-AA- A= Acoscos* = -1.v0 = 0得4)由.二一/2,3二 /2x0 = 0 c0= Acos cos = 0 中Lv0 = -A sin 0, sin 0得 二3 二 / 23简谐振动的相位:3t+ 3 :1 ) t+ (j) 一( x,v )存在一 一对应关系;2)相位在02兀内变化,质点无相同的运动状态; 相位差2n兀(n为整数)质点运动状态全同;3)初相位。(t=0)描述质点初始时刻的运动状态;(4取-兀一兀或0 2兀)4)对于两个同频率简谐运动相位差:。=。2-。1.简谐振动的速度:V=-Aco sin( co t

3、+。)加速度:a= A '2 cos( t ,:,)简谐振动的能量:EkEpE=E I1 2二一 mv 21k =kx12二一 m -212kAA2 sin2( t )K+E2 1 kA2,2cos2( t )2作简谐运动的系统机械能守恒4)两个简谐振动的合成(向同频的合成后仍为谐振动)1)两个同向同频率的简谐振动的合成:Xi=Aicos ( 8t +电),X 2=A2cos ( St +包) 合振动 X=X+X2=Acos ( &t+e)其中 A= fA2“; +2AA2 8甜2-6),tan 巾=A1S吸,小味。A1 cos 1 A2 cos 2相位差:=%一电=2鹏时,A

4、=Ai + A2,极大中=% 电=(2k+1) n 时,A= Ai + A2 极小若Ai八,:1A2 A ,- 22)两个相互垂直同频率的简谐振动的合成:x=Aicos (cot +电),y=A 2cos ( cot +%)其轨迹方程为:伍1/zj_2xycos巴-:荷巴T)IAJ VA2)AA2如果.) 0-2 - ;:1 < 二其合振动的轨迹为顺时针的椭圆2)二一2 - ;:1 <2.:其合振动的轨迹为逆时针的椭圆相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合 成运动的轨迹为李萨如图形。同向异频的合成:拍现象,拍频尸=¥2

5、¥1。重占八、1、熟记振动图像;2、掌握各个物理量的计算公式;3、掌握、熟记初相的确定;4、理解、掌握振动的合成。难点:1、用旋转矢量法确定初相;2、两种振动的合成及合成后 A和()的确定。六机械波知识点1、机械波的几个概念:1)机械波产生条件:1)波源;2)弹性介质机械振动在弹性介质中的传播形成波,波是运动状态的传播,介质的质点并不随波传播2波的分类:1)横波:振动方向与传播方向垂直;2)纵波:振动方向与传播方向平行,靠波的疏密部传播。3 描述波的几个物理量:1)波长入:一个完整波形的长度;2)周期T:波前进一个波长的距离所需要的时间 ;3)频率Y :单位时间内波动所传播的完整波的

6、数目;4)波速科:某一相位在单位时间内所传播的距离。=1/Tu = /T = u/ = Tu周期或频率只决定于波源的振动;波速只决定于媒质的性质;不同频率的波在同一介质中 波速相同;波在不同介质中频率不变。5)波线:沿波传播方向的有向线段。它代表波的传播方向。 波面:振动相位相同的所构成的曲面,又称波阵面。2、平面简谐波的波函数X、y=Acos co (t 一一)+的 祖沿x轴正万向; uX、y=Acos切(t +-)+沿x轴负万向; uy=Acos2 兀 v (t-x/ n )+ 小;t x、.y=Acos 2二(- - 一)+ .T相距为Ax的两点振动的相位差:© = -Ax3波

7、的能量1)、波的动能与势能:dEk =dEp =1 :dVA2 -sin2 (t -) p 2u2)、波的能量:dE 二 dEk dEP =?dVA2 2sin2 (t -) u结论:1)在波动传播的媒质中,任一体积元的动能、 化是同相位的.2) 任一体积元都在不断地接收和放出能量,波动是能量传递的一种方式.3)、能量密度:单位介质中的波动能量。w =dw =:入2 2 sin2 (t -)dvu势能、总机械能均随 x、t作周期性变化,且变即不断地传播能量.任一体积元的机械能不守恒平均能量密度: w = 1 :A2.224)、能流和能流密度:能流:单位时间内垂直通过介质中某一面积的能量。P=w

8、 u S (u: 波速,S:横截面积)1平均能流:p = wuS =,:*2. 2uS2能流密度(波强):垂直通过单位面积的平均能流。I = = wu = :A ;.-? uS 24惠更斯原理波的衍射和干涉1、惠更斯原理:波动所到达的媒质中各点,都可以看作为发射子波的波源,而后一时刻这些波的包络便是新的波 刖。2、 波的彳注射:波在传播过程中,遇到障碍物时其传播方向发生改变,绕过障碍物的边缘继续传播。 3、波的干涉:1)波的叠加原理:1波的独立作用原理一一几列波相遇后仍保持它们原有的特性(频率、波长、振幅、传播方向)不变, 互不干扰地各自独立传播。2.波的叠加原理一一在相遇区域内任一点的振动为

9、各列波单独存在时在该点所引起的振动位移的矢量 和。2)波的干涉:频率相同、振动方向平行、相位相同或相位差恒定的两列波相遇时,使某些地方振动始终加强,而使另一些地方振动始终减弱的现象,称为波的干涉现象干涉条件:同振动方向,同振动频率,相位差恒定。相干波源:若有两个波源,它们的振动方向相同、频率相同、周相差恒定,称这两波源为相干波源。3)干涉条纹出现的条件:设两相干波源S1和S2激发的相干波分别为:设两相干波源S1和S2激发的相干波分别为:y 二 A cos 2 二;一2 1y2 = A2 cos.|2nH 一旦+*2 在相遇区域内P点的赚动为两向方向同频率振动的合成。二51- -波程差:A =

10、A2 A2 2AA2cos : 相位差:二r - rr2 r14)、干涉相长与干涉相消:干涉相长(加强)的条件:cos : = 1即:呼=空介_r土2k兀k = 01,2即波程差为:6=2-r1=±k% k =0,1,2A=A1+A2, 21 由相位生是2兀的整数倍或波程差为波长的整数倍时,干涉相长加强。干涉相消大的条件:cos:; = -1.2二,中= 匕 一r1 )=±(2k +1)% k =0,1,2 即波程差为 6 =±(2k+1) , k = 0,1,22A A - A21 ,当相位差是兀的奇数倍或波程差为半波长的奇数倍时,干涉相消。中=其他彳直,A1

11、-A2 <A<A+A25、 驻波方程1)驻波:是两列同振幅、沿相反方向传播的相干波的干涉。波节间距: -22)波节:波节一一振幅为零(静止不动)的点。波腹:波腹一一振幅最大的点。3)驻波方程:设两列沿同一直线相向传播的同振幅相干波,其初相为零,即反射波:y2 =Acos y = yi y2入射波:yi -AcosA otx=Acos 2- -AcosILJ驻波方程:2二产=2 Acos 2-: cos2 二一T一一 一 xy =2Acos21cos t4)波节、波腹的位置:.波节位置:_ x .2Acos2n = 0x2n- = ±(2k +1)即 x = ±(

12、2k +1)-, (k= 0,1,2)24.相邻波节距离x = ±(2k+1) 4xk i.波腹位置:c x . cos2n =1x = ±k-, (k=0,1,2)2.相邻波腹距离:xk+xk = (k+1)万k"0T 2A。波节与波腹之间的距离为 K/4,除波节、波腹外,其它各点振幅 驻波的波形、能量都不能传播,驻波不是波,是一种特殊的振动。半波损失:波从波疏媒质入射到波密媒质界面反射时, 有相位冗的突变,称存在半波损失(反 之则不存在)。理论和实验证明:。即反射时入射波的当波由波密介质入射到波疏介质时,反射点为波腹,反射波与入射波在反射点同相; 当波由波疏介

13、质入射到波密介质时,反射点为波节,反射波与入射波在反射点反相 相位出现了n的突变,常把相位跃变 n的现象称为半波损失。重点:1、波动图像;2、平面简谐波的波函数的三种形式;3、干涉、衍射的条件及振动加强、减弱的条件4、驻波方程即波腹、波节的位置。难点:1、平面简谐波的三种简谐波方程;2、振动加强减弱的条件;3、波腹、波节的位置。七气体动理论知识点:1、基本概念物态参量(压强,温度,体积),理想气体,系统和外界,宏观,微观平衡态:在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态.2、.基本定律、定理、公式1)、理想气体物态方程:PV=MRT ,P=nkT,其中:n是分子数密度,n=N

14、/V,R=8.31J mol-1 K1,k= =1.38 x 10-23J K1N02)、热力学第令定律:如果系统A和系统B分别都与系统C的同一状态处于热平衡,那 么A和B接触时,它们也必定处于热平衡.3)、理想气体微观模型的内容:a、分子本身大小于分子间平均距离相比可忽略,分子可看成质点;b、除碰撞外,分子间相互作用可忽略。c、气体分子间以及气体与器壁间的碰撞可看成完全弹性碰撞。3)、理想气体压强公式:理想气体平衡态时的统计规律:vx =Vy=vz =0,v2=v2=v; =1v2x y zx y z 3一一* 一.一一 一 .、1o 1 。 -9 1 -O理想气体压强公式:P = - nm

15、v,又名k= mv,故 P=-nEk,又P = nm,故P=-Pv3233温度公式:为=-mv2 =3kT223、能量均分定理1)、自由度:分子自由度平动t转动r振动v总自由度单原子分子:3003刚性3205双原子分子:非刚性3227刚性3306三原子分子:非刚性336122)、能量按自由度均分定理:平衡态下,分子每个自由度具有平均动能-kT23)、理想气体的内能:E=M-RT o分子的平均能量£ JkT22dN4)速率分布函数:f (v) =_dN, f(vdv=1 (归一化条件)Ndv 0三种统计速率:最概然速率:平均速率:2 3kT 3RT RT方均根速率:.v1.73.,m

16、. M. M5)平均碰撞频率和平均自由程:Z = V2n d2V ,kTV2P2P重点:1、理想气体物态方程;2)理想气体的压强公式和理想气体平均平动动能与温度的关系式;3)能量均分定理和理想气体内能的计算;4)三种统计速率:最概然速率、平均速率、方均根速率。难点1)理想气体的压强公式和理想气体平均平动动能与温度的关系式;2)能量均分定理和理想气体内能的计算;3)三种统计速率:最概然速率、平均速率、方均根速率。八 热力学基础知识点:1、准静态过程1)、把研究的宏观物体称为热力学系统,也称系统、工作物质;而把与热力学系统相互作用的环境称为 外界。2)、准静态过程:从一个平衡态到另一平衡态所经过的

17、每一中间状态均可近似当作平衡态的过程.准静态过程在平衡态 p -V图上可用一条曲线来表示V23、傕静态过程功的计算 W = pdV ,气体所作的功等于 P-V图上过程曲线下的面积,系统所作的功V1不仅与系统的始末状态有关,而且与路径有关,故功是过程量。4)、热量:系统与外界之间由于温差而传递的能量,热量也是过程量。2、热力学第一定律:1)、理想气体的内能:理想气体不考虑分子间的相互作用,其内能只是分子的无规则运动能量(包括分子内原子间的振动势能)的总和,是温度的单值函数内能是状态量E = E (T) = iRT . 2理想气体内能变化与 CV,m的关系dE =vCV,mdT2)、热力学第一定律

18、:系统从外界吸收的热量, 一部分使系统的内能增加,另一部分使系统对外界做功.Q = E2- E1 + W ,对于无限小过程 d Q = dE + dW (注意:各物理量符号的规定)3、四个重要过程aw等体等压等温绝热过程特点dV = 0dp = 0dT = 0dQ = 0过程方程方一律-C TV- = cTpV=CPV ' = C 1V 缶=c2P T -丁 = C 3dQv = dEdQ = dE + pdvdQT = pdvdE + pdv = 0热量QvC/m(12-H:v OmS)V RTlnV2V10功W0P(V2 - V1)"RTlnV2V1-vCv,m(T2-T

19、1)P1V1 P2V2 1 -1内能变化用呢一日供一工)摩尔热容Cv, m = ! R2C 一二rc P,m _2 R0004、循环1)循环:系统经过一系列状态变化后,又回到原来的状态的过程叫循环.循环可用pV图上的一条闭合曲线表示.热机:顺时针方向进行的循环。热机效率=W=1QQ1 Q1致冷机:逆时针方向进行的循环。致冷系数e = Q2 = Q2W Qi -Q22)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程.卡诺循环由两个等温过程和两个绝热过程组成。卡诺热机效率=1 -卡诺致冷机致冷系数 e = T1 -T25、热力学第二定律1)热力学第二定律的两种表达式:开尔文表述:不可能制

20、造出这样一种循环工作的热机,它只使单一热源冷却来做功,而不放出热量给其他物体,或者说不使外界发生任何变化克劳修斯表述 不可能把热量从低温物体自动传到高温物体而不引起外界的变化热力学第二定律的实质:自然界一切与热现象有关的实际宏观过程都是不可逆的2)可逆与不可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而不引起其他变化,这样的过程叫做可逆过程.反之称为不可逆过程.3)卡诺定理:a、在相同高温热源和低温热源之间工作的任意工作物质的可逆机都具有相同的效率b、工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率6、嫡嫡增加原理1)嫡:在可逆过程中,系统从状

21、态 A改变到状态B,其热温比的积分是一态函数嫡的增量coBdQ 吓 7 dQSB SA = 或 ds = TT 3)嫡增原理:孤立系统的嫡永不减少 .孤立系统中的可逆过程,其嫡不变;孤立系统中的不可逆过程,其嫡要增加.重点:1、准静态过程功的计算;2、热力学第一定律以及式中各物理量的符号规定;3、四个(等体、等压、等温、绝热)过程的过程特点、过程方程、过程曲线、内能增量、所作的功以及 热量变化。4、卡诺循环原理和几种效率公式;5、热力学第二定律的两种表达、卡诺定理和嫡增加原理的条件和内容。难点:1、热力学第一定律以及式中各物理量的符号规定;2、四个(等体、等压、等温、绝热)过程的过程特点、过程

22、方程、过程曲线、内能增量、所作的功以及 热量变化。3、卡诺循环原理和几种效率公式;九相对论1、两种时空观:1)对于任何惯性参照系,牛顿力学的规律都具有相同的形式 .这就是经典力学的相对性原理 .适用于低速 宏观物体。经典力学认为:1)空间的量度是绝对的,与参考系无关;2)时间的量度也是绝对的,与参考系无关.2)绝对时空概念:时间和空间的量度和参考系无关,长度和时间的测量是绝对的.用于微观高速物体。2、两个变换 1)伽利略变换(时空变换,t不变): 位置坐标变换公式: x=x-vt y=y z=z 速度变换公式: '''u x = Ux - v Uy =Uyuz = Uz

23、加速度变换公式: '''a x = a*a y = ay a z = az 2)洛伦兹变换式:x vt(x vt)z' z洛伦兹变换意义:基本的物理定律应该在洛伦兹变换下保持不变.这种不变显示出物理定律对匀速直线运动的对称性 相对论对称性.3、狭义相对论的两条基本原理:1)爱因斯坦相对性原理:物理定律在所有的惯性系中都具有相同的表达形式相对性原理是自然界的普遍规律所有的惯性参考系都是等价的 .2)光速不变原理:真空中的光速是常量,它与光源或观察者的运动无关,即不依赖于惯性系的选择关键概念:相对性和不变性伽利略变换与狭义相对论的基本原理不符和光速不变紧密联系在一起

24、的是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一惯性系中观察,并不一定是同时发生的说明同时具有相对性,时间的量度是相对的.长度的测量是和同时性概念密切相关4、三种效应:1)长度收缩:lo固有长度,l待测长度,产= 一c固有长度:物体相对静止时所测得的长度.(最长)长度收缩是一种相对效应,此结果反之亦然2)时间延缓:to'1 - 2时间延缓是一种相对效应.(例如新陈代谢、放射性的衰变、寿命等 .)时间的流逝不是绝对的,运动将改变时间的进程狭义相对论的时空观:1) 两个事件在不同的惯性系看来,它们的空间关系是相对的,时间关系也是相对的,只有将空间和时间联系在一起才有意义2

25、)时一空不互相独立,而是不可分割的整体 3)光速C是建立不同惯性系间时空变换的纽带 .3)质量变化:m0m 二11- -21=1,Mo其中m是相对性质量, m0是静质4)狭义相对论的力学基本方程:dp d / m°v 、dv dmF (0m vdt dt 1 22dtdt5三种关系:5一21)动量与速度的关系:相对论动量:p =-1)2)质量与能量的关系:相对论动能 Ek = mc2 - m0c2 = ko22相对论质能关系:E=mc=mocEK质能关系预言:物质的质量就是能量的一种储藏质能关系式(EE = (Am c2)的物理意义:惯性质量的增加和能量的增加相联系,质量的大小应标志

26、着能量的大小,这是相对论的又其重要的 推论.3)动量与能量的关系:E2 =E。2+P2C2其中:E是总能,Eo是静能,P是动量,C是光速。重点:1、两种时空观,两个变换,和两条原理;2、三种效应以及三个关系式。难点:两个变换,三种效应以及三个关系式。光的干涉和衍射知识点:1 .获得相干光的基本原理:把一个光源的一点发出的光束分为两束。具体方法有分波阵面法和分振 幅法。2 .杨氏双峰干涉:是分波阵面法,其干涉条纹是等间距的直条纹。条纹中心位置:明纹:x=_kD-k =0,1,2,.2aD暗纹:x=_(2k 1)k= 0,1,2,,2a 2条纹间距:x = 2a 3.光程差62-4.位相差e有半波

27、损失时,相当于光程增或减相位发生冗的突变。25 .薄膜干涉(1)等厚干涉:光线垂直入射,薄膜等厚处为同一条纹。劈尖干涉:干涉条纹是等间距直条纹.对空气劈尖:明纹:2ne = k- k = 1,2,2暗纹:2ne =(2k 1) k= 0,1,2,,22牛顿环干涉:干涉条纹是以接触点为中心的同心圆环l(kR九明环半径:明='2k =1,2,.暗环半径:皿=.kR' k =0,1,2,.(2)等倾干涉:薄膜厚度均匀,采用面广元,以相同倾角入射的光,其干涉情况一样,干涉条纹是 环状条纹。明环:2e. n2 - n12sin 2 i 鼻=k, k=1,2,.暗环:2e. n2 n2si

28、n2i =(2k 1) k =0,1,2,. 226 .迈克尔逊干涉仪7 .单缝夫朗和费衍射用半波带法处理衍射问题,可以避免复杂的计算.单色光垂直入射时,衍射暗纹中心位置:asin* = -2k-k =1,2,.2一、X九亮纹中心位置:a sin = (2k 1) k =,1,2,.28 .光栅衍射9 .光学仪器分辨率重点:1 .掌握用半波带法分析夫朗和费衍射单缝衍射条纹的产生及其亮暗纹位置的计算2 .理解光栅衍射形成明纹的条件,掌握用光栅方程计算谱线位置。3 .理解光程及光程差的概念.,并掌握其计算方法;理解什么情况下反射光有半波损失。4 .掌握劈尖、牛顿环干涉实验的基本装置,会计算干涉条纹

29、的位置,并了解其应用。知识点:1.2.3.4.5.重点:1.2.3.4.难点:1.光轴的概念,寻常光与非常光。难点:光栅衍射及谱线位置的计算。光的偏振光波是横波,自然光、线偏振光、部分偏振光等的定义和描述。偏振片的起偏和检偏马吕斯定律反射和折射时光的偏振双折射现象 从光的偏振说明光是横波,理解用偏振片起偏和检偏的方法 .掌握马吕斯定律,能熟练应用它计算偏振光通过检偏器后光强的变化掌握用反射和折射现象获得偏振光的方法 .理解光轴的概念,理解寻常光与非常光的区别。狭义相对论基础知识点:1.2.爱因斯坦狭义相对论的基本假设。 洛仑兹坐标变换式中3.长度收缩uxt=¥ tux. c22d u1 2c2L = L。、:1 _ u_(注意同时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论