版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学必修一、必修四、必修五知识点一、知识点梳理必修一第一单元1.集合定义:一组对象的全体形成一个集合.2.特征:确定性、互异性、无序性.3.表示法:列举法1,2,3,、描述法x|P、韦恩图、语言描述法不是直角三角形的三角形4.常用的数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N.5.集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合例:x|x2=55.关系:属于、不属于、包含于(或)、真包含于、集合相等.6.集合的运算(1)交集:由所有属于集合A且属于集合B的元素所组成的集合;表示为: 数学表达式: 性质:(2
2、)并集:由所有属于集合A或属于集合B的元素所组成的集合;表示为: 数学表达式: 性质:(3)补集:已知全集I,集合,由所有属于I且不属于A的元素组成的集合。表示: 数学表达式:方法:韦恩示意图, 数轴分析.注意: 区别与、与、a与a、与、(1,2)与1,2; AB时,A有两种情况:A与A.若集合A中有n个元素,则集合A的所有不同的子集个数为,所有真子集的个数是-1, 所有非空真子集的个数是。空集是指不含任何元素的集合。、和的区别;0与三者间的关系。空集是任何集合的子集,是任何非空集合的真子集。条件为,在讨论的时候不要遗忘了的情况。符号“”是表示元素与集合之间关系的,立体几何中的体现 点与直线(
3、面)的关系 ;符号“”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。8.函数的定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作y=f(x),xA,其中x叫做自变量.x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合f(x)|xA叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式
4、的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.求函数的值域的方法 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法9.两个函数的相等:当且仅当两个函数的定义域和对应法则(与表示自变量和函数值的字母无关)都分别相同时,这两个函数才是同一个函数.10.映射的定义:一般地,设A、B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,
5、这样的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作f:AB.由映射和函数的定义可知,函数是一类特殊的映射,它要求A、B非空且皆为数集.11.函数的三种表示法:解析法、列表法、图象法12.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)f(x2),那么就说f(x)在这
6、个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性)(B)图象法(从图象上看升降)注意:函数的单调区间只能是其定义域
7、的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(x)与f(x)的关系;作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x
8、) 或 f(x)f(x) = 0,则f(x)是奇函数注意:函数定义域关于原点对称是函数具有奇偶性的必要条件首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待定系数法3) 换元法4) 消参法10函数最大(小)值(定义见课本p
9、36页) 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);13一些有用的结论: (1)奇函数在其对称区间上的单调性相同; (2)偶函数在其对称区间上的单调性相反;(3)若奇函数的定义域包含,则15. 复合函数(1).复合函数:若y=f(u),u=g(x),xÎ(a,b),uÎ(m,n
10、),那么y=fg(x)称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。(2).复合函数的定义域:若已知的定义域,其复合函数的定义域应由解出(3).复合函数在公共定义域上的单调性:若f与g的单调性相同,则为增函数;若f与g的单调性相反,则为减函数。简记为“同增异减” 注意:先求定义域,单调区间是定义域的子集。6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集必修一第二单元1根式的概念:一般地,如果,那么叫做的次方根,其中>1,且*当是奇数时,正数的次方根是一个正数,负数的
11、次方根是一个负数此时,的次方根用符号表示式子叫做根式,这里叫做根指数,叫做被开方数当是偶数时,正数的次方根有两个,这两个数互为相反数此时,正数的正的次方根用符号表示,负的次方根用符号表示正的次方根与负的次方根可以合并成±(>0)由此可得:负数没有偶次方根;0的任何次方根都是0,记作结论:当是奇数时, 当是偶数时,2分数指数幂规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂3有理指数幂的运算性质(1)·; (2);(3)一般地,无理数指数
12、幂是一个确定的实数有理数指数幂的运算性质同样适用于无理数指数幂4.一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R5.指数函数的性质图象特征函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了
13、某一值后减小速度较慢;6.对数的概念:一般地,如果,那么数叫做以为底的对数,记作: 底数, 真数, 对数式说明: 注意底数的限制,且; ; 注意对数的书写格式两个重要对数: 常用对数:以10为底的对数; 自然对数:以无理数为底的对数的对数7.对数式与指数式的互化: 8.对数的性质(1)负数和零没有对数; (2)1的对数是零:;(3)底数的对数是1:;(4)对数恒等式:;(5)9.如果,且,那么:(1)·; (2);(3) 10.换底公式(,且;,且;)(1); (2)11.对数函数的概念1定义:函数,且叫做对数函数。其中是自变量,函数的定义域是(0,+)注意: 对数函数的定义与指数函
14、数类似,都是形式定义,注意辨别如:, 都不是对数函数,而只能称其为对数型函数对数函数对底数的限制:,且 类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:图象特征函数性质函数图象都在y轴右侧函数的定义域为(0,)图象关于原点和y轴不对称非奇非偶函数向y轴正负方向无限延伸函数的值域为R函数图象都过定点(1,1)自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数第一象限的图象纵坐标都大于0第一象限的图象纵坐标都大于0第二象限的图象纵坐标都小于0第二象限的图象纵坐标都小于0规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大12.幂函数:一般地,形如的函数称为幂函数
15、,其中为常数幂函数性质归纳:(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴必修一第三单元1.函数零点的概念:对于函数,把使成立的实数叫做函数的零点函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标即:方程有实数根函数的图象与轴有交点函数有零点2.函数零点的求法:求函数的零点:(代数法)求方程的实数根;(几
16、何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点3.零点存在性定理:如果函数y=f(x)在区间a,b上的图象是连续不断一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c(a,b),使得f(c )=0,这个c也就是方程f(x)=0的根.4.二分法及步骤:对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法给定精度,用二分法求函数的零点近似值的步骤如下:1确定区间,验证·,给定精度;2求
17、区间,的中点;3计算: 若=,则就是函数的零点; 若·<,则令=(此时零点); 若·<,则令=(此时零点);4判断是否达到精度;即若,则得到零点零点值(或);否则重复步骤24必修四第一单元1.任意角的三角函数的意义及其求法:在角上的终边上任取一点,记 则, , .2.三角函数值在各个象限内的符号:正弦:上正下负; 余弦:左负右正; 正切:一、三正,二、四负3.同角三角函数间的关系:.4.诱导公式,口诀:函数名称不变,符号看象限,口诀:奇变偶不变,符号看象限5. 三角函数的图像与性质:名称定义域值 域图象奇偶性奇函数偶函数奇函数单调性单调增区间:()单调减区间:
18、)单调增区间:()单调减区间: ()()单调增区间:()周期性对称性对称中心: ,对称轴: ,对称中心:,对称轴: , 对称中心:,对称轴:无最值时,;时, 时,;时,无6.得到函数的图象的方法:方法1、函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象方法2、函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所
19、有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象7.函数的性质:振幅:;周期:;频率:;相位:;初相:函数,当时,取得最小值为 ;当时,取得最大值为,则,必修四第二单元16、向量:既有大小,又有方向的量数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度零向量:长度为的向量单位向量:长度等于个单位的向量平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式: 运算性质:交换律:;结合律:;坐标运算:设,则18、向量减法运算:三角形法则的特
20、点:共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则19、向量数乘运算:实数与向量的积是一个向量的运算叫做向量的数乘,记作;当时,的方向与的方向相同;当时,的方向与的方向相反;当时,运算律:;坐标运算:设,则20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,其中,则当且仅当时,向量、共线21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使(不共线的向量、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段上的一点,、的坐标分别是,当时,点的坐标是23、平面向量的数量积:零向量与任一向量的
21、数量积为性质:设和都是非零向量,则当与同向时,;当与反向时,;或运算律:;坐标运算:设两个非零向量,则若,则,或设,则设、都是非零向量,是与的夹角,则必修四第三单元1.三角恒等变换公式正弦的两角和、差公式:sin()sin cos cos sin sin()sin cos cos sin 余弦的两角和、差公式:cos()cos cos sin sin cos()cos cos sin sin 正切的两角和、差公式:tan()tan()正弦的二倍角公式:sin 22sin cos 余弦的二倍角公式:cos 2cos2 sin2 2cos2 1 12sin2 正切的二倍角公式:tan 2必修五第一
22、单元1.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一: (解三角形的重要工具)形式二: (边化正弦)形式三:(比的性质)形式四:(正弦化边)利用正弦定理能够解两类三角形:1、已知三角形的任意两角与任意一边.其步骤是:(1)利用三角形内角和定理求出第三个角;(2)利用正弦定理求出另两边.2、已知三角形的任意两边与其中一边的对角.其步骤是:(1)利用正弦定理求出另一边的对角;(2)利用三角形内角和定理求出第三个内角;(3)利用正弦定理求出第三边.此时,可能无解或仅有一解或有两解.判断有多少个解的方法:在中,已知a,b和A,解三角形时,由正弦定理得则有两解.2.余弦定理:三角形任
23、何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.(遇见二次想余弦)形式一: 形式二: ,利用余弦定理能够解三类三角形:1、已知三角形的三边,求三个角.其步骤是:(1)利用余弦定理求出两个角;(2)利用三角形的内角和定理求出第三个角.2、已知三角形的两边及其夹角,求第三边和另外两个角,其步骤是:方法一:(1)利用余弦定理求出第三边;(2)利用余弦定理求出一个角;(3)利用三角形内角和定理求出第三个角.方法二:(1)利用余弦定理求出第三边;(2)利用正弦定理求出一个角;(3)利用三角形内角和定理求出第三个角.3、已知三角形的任意两边与其中一边的对角:用余弦定理求出第三边,此
24、时第三边的个数即为三角形解的个数.必修五第二单元1数列的概念:数列是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应函数的解析式。 2等差数列的有关概念:(1)等差数列的判断方法:定义法或。(2)等差数列的通项:或。(3)等差数列的前和:,。(4)等差中项:若成等差数列,则A叫做与的等差中项,且。提醒: 1等差数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。2为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(公差为2)
25、3等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有.(4)若、是等差数列,则、 (、是非零常数)、 ,也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. (5)在等差数列中,当项数为偶数时,;项数为奇数时,(这里即);。4等比数列的有关概念:(1)等比数列的判断方法:定义法,其中或。(2)等比数列的通项:或。 (3)等比数列的前和:当时,;当时,。特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。(4)等比中项:若成等比数列,那么A叫做与的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。提醒: 1等比数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;2为减少运算量,要注意设元的技巧,如奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临床氨甲苯酸、氨基己酸、氨甲环酸等止血药适应症、用法、不良反应、禁忌症等区别及药理作用
- 2024果树采购合同
- 2025高考生物备考说课稿:免疫失调与免疫学的应用说课稿
- 2024融资合同范本:新能源汽车产业专项协议3篇
- 专属2024学校系列校服订购协议
- 2024液化气运输合同能源消耗与减排责任规范文本3篇
- 专业咨询顾问合作合同(2024年度版)版
- 福建省南平市松溪县郑墩中学高二语文月考试题含解析
- 12坐井观天(说课稿)2024-2025学年统编版语文二年级上册
- 1-1《子路、曾皙、冉有、公西华侍坐》说课稿-2024-2025学年高一语文下学期同步说课稿(统编版必修下册)
- 北师大版七年级数学寒假班讲义(基础班)
- 2025年驾照C1证考试科目一必考题库770题及答案
- 2024-2025学年北师版八年级物理上册期末考试综合测试卷
- 全国城市雕塑行业设计收费标准
- 质量管理组织机构及职责
- 园区保安队长的工作职责
- 中文论文标准格式及说明
- 宁波市彩叶树种园林应用调查研究
- 国家电网公司电力客户档案管理规定
- iso10110系列标准
- 万能中国地图模板(可修改)
评论
0/150
提交评论