数据的计量尺度有哪些_第1页
数据的计量尺度有哪些_第2页
数据的计量尺度有哪些_第3页
数据的计量尺度有哪些_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、真诚为您提供优质参考资料,若有不当之处,请指正。1、数据的计量尺度有哪些?各自特征(1)定类尺度:计量层次最低;对事物进行平行的分类;各类别可以指定数字代码表示;使用时必须符合类别穷尽和互斥的要求;数据表现为“类别”;具有=或¹的数学特性(2)定序尺度:对事物分类的同时给出各类别的顺序;比定类尺度精确;未测量出类别之间的准确差值;数据表现为“类别”,但有序;具有>或<的数学特性(例如,产品分为一等品、二等品、三等品、次品等)(3)定距尺度:对事物的准确测度;比定序尺度精确;数据表现为“数值”;没有绝对零点;具有 + 或 的数学特性,但是倍数关系不成立(如气温可以有温差,但

2、不能有倍数关系)(4)定比尺度:对事物的准确测度;与定距尺度处于同一层次;数据表现为“数值”;有绝对零点;具有 ´ 或 ¸ 的数学特性,也可+或 ,倍数关系成立(如年龄可以有差值也可以有倍数关系)&以上四种计量尺度对事物的测量层次由低级到高级、由粗略到精确逐步地进,高层次计量尺度有低层次计量尺度的全部特征,反之不成立。·对测量尺度层次的判断(1)较低层次的测量尺度测量精度低,而较高层次的测量尺度测量精度高。(2)较低层次的测量尺度计算方法少,而较高层次的测量尺度计算方法多。(3)较低层次的测量尺度信息数量少,而较高层次的测量尺度信息数量多。2、条形图与直方

3、图的不同(1)直方图表示定量数据(定距、定比数据),条形图表示定性数据(定类、定序数据)(2)条形图是用条形的长度表示各类别频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或百分比,宽度则表示各组的组距,高度与宽度均有意义(3)直方图的各矩形通常是连续排列,条形图则是分开排列3、均值、中位数和众数的特点及之间的关系(1)众数:不受极端值影响、具有不惟一性、数据分布偏斜程度较大时应用(2)中位数:不受极端值影响、数据分布偏斜程度较大时应用(3)均值:易受极端值影响、数学性质优良、数据对称分布或接近对称分布时应用·当分布为适度偏态时,三者之间近似的

4、数量关系是:众数与算术平均数的距离是中位数与算术平均数距离的3倍,即:根据这一关系,可以得到以下三个关系式: 4、为什么要计算离散系数?如何运用离散系数判断平均数的代表性?(1)离散系数:标准差与其相应的均值之比,是对数据相对离散程度的测度,消除了数据水平高低和计量单位的影响,用于对不同组别数据离散程度的比较,用V表示。公式如下: (2)离散系数大的离散程度大,平均数代表性小;反之,离散系数小的离散程度小,平均数代表性大。5、什么是参数?什么是统计量?二者有何关系?(1)参数:研究者想要了解的总体的某种特征值。总体参数通常用希腊字母表示,所关心的参数主要有总体均值(m)、标准差(s)、总体比例

5、()等。(2)统计量:根据样本数据计算出来的一个量。样本统计量通常用小写英文字母来表示,所关心的样本统计量有样本均值(x)、样本标准差(s)、样本比例(p)等(3)关系:6、评价估计量优良的标准是什么?(1)无偏性:估计量抽样分布的数学期望等于被估计的总体参数。若,则称为的无偏估计量。(2)有效性:作为优良的估计量,除了满足无偏性的要求外,其方差应比较小。假定 、 为总体参数 的两个无偏估计量,其抽样分布的方差分别用 和 表示,若,则称为比更有效的估计量。在无偏估计条件下,估计量方差越小,离散程度越小,估计越有效。(3)一致性:指随着样本单位数n的增大,样本估计量将在概率意义下越来越接近于总体

6、真实值。若n越大越小,则称为的一致估计量。7、什么是假设检验中的两类错误?第一类错误和第二类错误分别指什么?它们发生的概率大小之间存在怎样的关系?(1)第一类错误(弃真错误):原假设正确却拒绝了原假设。第类错误的概率记为,被称为显著性水平。(2)第二类错误(存为错误):原假设为假时未拒绝原假设。第类错误的概率记为 。(3)关系:在样本量不变的情况下, 越小,犯第一类错误的可能性越小,但 就大,犯第二类错误的可能性越大;反之, 越大,犯第一类错误的可能性越大, ,但 就小,饭第二类错误的可能性越小。不能同时减少两类错误,要使二者同时减小的唯一办法就是增加样本量。8、另加:什么是小概率事件原理?(

7、1)在一次试验中,一个几乎不可能发生的事件发生的概率(2)在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设(3)小概率由研究者事先确定9、什么是方差分析,它研究的是什么?(1)方差分析就是从数据差异入手,通过检验多个总体均值是否相等来判断分类型自变量对数值型因变量是否有显著影响的统计方法。(2)方差分析从形式上看是比较多个总体的均值是否相等,但本质上研究的是变量之间的关系,包括他们之间有没有影响关系,关系的强度如何等。10、方差分析中有哪些基本假定每个总体均服从正态分布。即有:xN(u,2) 对于每个因素中的每一个水平,其观测值是来自正态分布总体的简单随机样本。每个总体的方差都相同。即:

8、21=22=n2 各组观测数据是从具有相同方差的正态分布总体中抽取的。各水平下的观测值相互独立。11、简述方差分析的基本思想比较两类误差,以检验均值是否相等比较的基础是方差比如果系统(处理)误差明显地不同于随机误差,则均值就不相等;反之,均值相等误差是由各部分的误差占总误差的比例来测度的12、简述方差分析的基本步骤 (一)提出假设一般提法H0 : m1 = m2 = mk 自变量对因变量没有显著影响 H1 : m1 ,m2 , ,mk不全相等 自变量对因变量有显著影响 注意:拒绝原假设,只表明至少有两个总体的均值不相等,并不意味着所有的均值都不相等 (二)构造检验的统计量1. 计算各水平的均值

9、(1)假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本的全部观察值总和除以观察值的个数(2)计算公式为式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值 2. 计算全部观察值的总均值(1)全部观察值的总和除以观察值的总个数(2)计算公式为: 3. 计算误差平方和(1)总误差平方和(2)水平项误差平方和 3)误差平方和(4)三个平方和的关系SST=SSA+SSE(5)三个平方和的作用 SST反映全部数据总的误差程度;SSE反映随机误差的大小;SSA反映随机误差和系统误差的大小 如果原假设成立,则表明没有系统误差,组间平方和SS

10、A除以自由度后的均方与组内平方和SSE和除以自由度后的均方差异就不会太大;如果组间均方显著地大于组内均方,说明各水平(总体)之间的差异不仅有随机误差,还有系统误差 判断因素的水平是否对其观察值有影响,实际上就是比较组间方差与组内方差之间差异的大小4. 计算统计量(1)计算均方差(MS)组间均方差:SSA的均方差,记为MSA,组内均方差:SSE的均方差,记为MSE,2)计算检验统计量F (三)统计决策Æ 将统计量的值F与给定的显著性水平a的临界值Fa进行比较,作出对原假设H0的决策根据给定的显著性水平a,在F分布表中查找与第一自由度df1k-1、第二自由度df2=n-k 相应的临界值

11、Fa 若F>Fa ,则拒绝原假设H0 ,表明均值之间的差异是显著的,所检验的因素对观察值有显著影响若F<Fa ,则不能拒绝原假设H0 ,表明所检验的因素对观察值没有显著影响 13、一元线性回归模型中有哪些假定?14、相关分析与回归分析的联系(1).共同的研究对象:都是对变量间相关关系的分析(2)只有当变量间存在相关关系时,用回归分析去寻求相关的具体数学形式才有实际意义(3).相关分析只表明变量间相关关系的性质和程度,要确定变量间相关的具体数学形式依赖于回归分析(4).相关分析中相关系数的确定建立在回归分析的基础上15、时期数列和时点数列的区别有哪些?(1)当绝对数时间序列中的数据反

12、映的是现象在所属时期内发展过程的总量时,就称为时期序列。其特点:1>序列中不同时间的数据具有可加性。2>序列中每个数据的大小与其所属时间的长短有直接联系。3>序列中每个数据需要连续登记取得。如国内生产总值序列(2)当绝对数时间序列中的总量数据反映的是现象在某一时点上所处的总量时,称该序列为时点序列。 其特点:1>序列中不同时点的数据不具有可加性。2>序列中各数据的大小与其间隔长短没有直接联系。3>序列中各数据无需连续登记取得。如我国20002010年全国年末总人口序列16、季节变动分析中的按月(季)平均法和趋势剔除法有什么不同?(1)按月(季)平均法:直接根

13、据原时间序列通过简单平均来计算季节指数,适用于包含水平趋势、季节变动和不规则变动的时间序列,即时间序列中不存在明显的长期趋势和循环波动因素。·【基本假定】原时间序列包含水平趋势、季节变动和不规则变动,没有明显的上升或下降的长期趋势和循环变动 ·【计算步骤】第一步:计算时间序列中各年同期(同月或同季)的平均数;第二步:计算时间序列全部数据的总平均数;第三步:计算各年同期(同月或同季)的平均数与总平均数的比值,即为季节指数(S)。公式:(2)趋势剔除法:该方法的基本思想是,先将时间序列中的长期趋势予以消除,然后再计算季节指数 。·【基本假定】采用移动平均趋势剔除法分析季节变动时,假定时间序列各要素的关系结构为:y=T×S×C×I,同时假定各年度的不规则波动I彼此独立·【计算步骤】第一步:根据各年的月份(或季度)数据,计算12个月(或4个季度)移动平均趋势值T×C;第二步:将各实际观察值y除以相应趋势值T×C,即:第三步:将S×I重新按月(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论