用待定系数法求二次函数的解析式PPT课件_第1页
用待定系数法求二次函数的解析式PPT课件_第2页
用待定系数法求二次函数的解析式PPT课件_第3页
用待定系数法求二次函数的解析式PPT课件_第4页
用待定系数法求二次函数的解析式PPT课件_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021/6/211用待定系数法求二次函数的解析式yxo课前复习课前复习例题选讲例题选讲课堂小结课堂小结课堂练习课堂练习2021/6/212课前复习二次函数解析式有哪几种表达式?二次函数解析式有哪几种表达式? 一般式:一般式:y=ax2+bx+c 顶点式:顶点式:y=a(x-h)2+k例题例题封面封面2021/6/213例题选讲一般式:一般式: y=ax2+bx+c顶点式:顶点式:y=a(x-h)2+k解:解: 设所求的二次函数为设所求的二次函数为y=ax2+bx+c由条件得:由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:解方程得:因此:所求二次函数是:因此:所求二次函数

2、是:a=2, b=-3, c=5y=2x2-3x+5已知一个二次函数的图象过点(已知一个二次函数的图象过点(1,10)、)、(1,4)、()、(2,7)三点,求这个函数的解析式?)三点,求这个函数的解析式?oxy例例1例题例题封面封面2021/6/214例题选讲解:解:设所求的二次函数为设所求的二次函数为y=a(x1)2-3由条件得:由条件得:已知抛物线的顶点为(已知抛物线的顶点为(1,3),与轴交点为),与轴交点为(0,5)求抛物线的解析式?)求抛物线的解析式?yox点点( 0,-5 )在抛物线上在抛物线上a-3=-5, 得得a=-2故所求的抛物线解析式为故所求的抛物线解析式为 y=2(x1

3、)2-3即:即:y=2x2-4x5一般式:一般式: y=ax2+bx+c顶点式:顶点式:y=a(x-h)2+k例例2例题例题封面封面2021/6/215例题选讲解:解: 设所求的二次函数为设所求的二次函数为y=a(x1)(x1)由条件得:由条件得:已知抛物线与已知抛物线与X轴交于轴交于A(1,0),),B(1,0)并经过点并经过点M(0,1),求抛物线的解析式?),求抛物线的解析式?yox点点M( 0,1 )在抛物线上在抛物线上所以所以:a(0+1)(0-1)=1得:得: a=-1故所求的抛物线解析式为故所求的抛物线解析式为 y=- (x1)(x-1)即:即:y=x2+1一般式:一般式: y=

4、ax2+bx+c顶点式:顶点式:y=a(x-h)2+k例题例题例例3封面封面2021/6/216例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里( (如图所示如图所示) ),求抛物线的解析式,求抛物线的解析式 例例4设抛物线的解析式为设抛物线的解析式为y=ax2bxc,解:解:根据题意可知根据题意可知抛物线经过抛物线经过(0,0),(20,16)和和(40,0)三点三点 可得方程组可得方程组 通过利用给定的条件通过利用给定的条件列出列出a、b、c的三元的三

5、元一次方程组,求出一次方程组,求出a、b、c的值,从而确定的值,从而确定函数的解析式函数的解析式过程较繁杂,过程较繁杂, 评价评价封面封面练习练习2021/6/217例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度有一个抛物线形的立交桥拱,这个桥拱的最大高度为为16m16m,跨度为,跨度为40m40m现把它的图形放在坐标系里现把它的图形放在坐标系里( (如图所示如图所示) ),求抛物线的解析式,求抛物线的解析式 例例4设抛物线为设抛物线为y=a(x-20)216 解:解:根据题意可知根据题意可知 点点(0,0)在抛物线上,在抛物线上, 通过利用条件中的顶通过利用条件中的顶点和过原点选用顶点

6、点和过原点选用顶点式求解,式求解,方法比较灵活方法比较灵活 评价评价 所求抛物线解析式为所求抛物线解析式为 封面封面练习练习2021/6/218课堂练习一个二次函数,当自变量一个二次函数,当自变量x= -3时,函数值时,函数值y=2当自变量当自变量x= -1时,函数值时,函数值y= -1,当自变量,当自变量x=1时时,函数值,函数值y= 3,求这个二次函数的解析式?,求这个二次函数的解析式?1、封面封面小结小结2021/6/219如图,对称轴为直线如图,对称轴为直线x 的抛物线经过点的抛物线经过点A(6,0)和)和B(0,4)(1)求抛物线解析式及顶点坐标;)求抛物线解析式及顶点坐标;(2)设

7、点)设点E(x,y)是抛物线上一动点,且位于第四象限,)是抛物线上一动点,且位于第四象限,四边形四边形OEAF是以是以OA为对角线的平行四边形,求四边形为对角线的平行四边形,求四边形OEAF的面积的面积S与与x之间的函数关系式,并写出自变量之间的函数关系式,并写出自变量x的取的取值范围;值范围;272021/6/2110(3)当四边形当四边形OEAF的面积为的面积为24时,请判断时,请判断OEAF是否为菱形?是否为菱形?是否存在点是否存在点E,使四边形,使四边形OEAF为正方形?若存为正方形?若存在,求出点在,求出点E的坐标;若不存在,请说明理由的坐标;若不存在,请说明理由2021/6/2111课堂小结课堂小结求二次函数解析式的一般方法:求二次函数解析式的一般方法:已知图象上三点或三对的对应值,已知图象上三点或三对的对应值, 通常选择一般式通常选择一般式已知图象的顶点坐标(对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论