常微分方程课后习题答案_第1页
常微分方程课后习题答案_第2页
常微分方程课后习题答案_第3页
常微分方程课后习题答案_第4页
常微分方程课后习题答案_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1. 试证n阶非齐线形微分方程(4.1)存在且最多存在n+1个线形无关解。 证:设为(4.1)对应的齐线形方程的一个基本解组,是(4.1)的一个解,则: (1),均为(4.1)的解。同时(1)是线形无关的。 事实上:假设存在常数,使得: (*)的左端为非齐线形方程的解,而右端为齐线形方程的解,矛盾!从而有又为(4.1)对应的齐线形方程的一个基本解组,故有: 即(1)是线形无关的。习题4.2 1. 解下列方程(1) 解:特征方程故通解为x=(2)解:特征方程有三重根故通解为x=(3)解:特征方程有三重根,2,-2故通解为(4) 解:特征方程有复数根-1+3i,-1-3i 故通解为(5) 解:特征

2、方程有复数根故通解为(6) 解:特征方程有根a,-a当时,齐线性方程的通解为s=代入原方程解得故通解为s=-当a=0时,代入原方程解得故通解为s=-(7) 解:特征方程有根2,两重根1齐线性方程的通解为x=又因为0不是特征根,故可以取特解行如代入原方程解得A=-4,B=-1故通解为x=-4-t(8) 解:特征方程故齐线性方程的通解为x=取特解行如代入原方程解得A=1,B=0,C=1故通解为x=+(9)解:特征方程有复数根故齐线性方程的通解为取特解行如代入原方程解得A=故通解为(10) 解:特征方程有根-2,1故齐线性方程的通解为x=因为+-2i不是特征根取特解行如代入原方程解得A=故通解为x=

3、(11)解:特征方程有复数根故齐线性方程的通解为 1是特征方程的根,故代入原方程解得A=故通解为+(12)解:特征方程有2重根-a当a=-1时,齐线性方程的通解为s=,1是特征方程的2重根,故代入原方程解得A=通解为s=,当a-1时,齐线性方程的通解为s=,1不是特征方程的根,故代入原方程解得A=故通解为s=+(13)解:特征方程有根-1,-5故齐线性方程的通解为x=2不是特征方程的根,故代入原方程解得A=故通解为x=+(14)解:特征方程有根-1+i,-1-i故齐线性方程的通解为不是特征方程的根, 取特解行如代入原方程解得A=故通解为+(15) 解:特征方程有根i,- i故齐线性方程的通解为

4、,i,是方程的解 代入原方程解得A= B=0 故 代入原方程解得A= B=0 故故通解为习题5.11.给定方程组x=x x= (*) a)试验证u(t)=,v(t)=分别是方程组(*)的满足初始条件u(0)=, v(0)=的解. b)试验证w(t)cu(t)+cv(t)是方程组(*)的满足初始条件w(0)=的解,其中是任意常数. 解:a) u(0)= u(t)=u(t) 又 v(0)= v(t)= =v(t)因此 u(t),v(t)分别是给定初值问题的解.b) w(0)=u(0)+u(0)= += w(t)= u(t)+ v(t) = + = = =w(t)因此 w(t)是给定方程初值问题的解

5、.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x+2x+7tx=e,x(1)=7, x(1)=-2b) x+x=te,x(0)=1, x(0)=-1,x(0)=2,x(0)=0c) x(0)=1, x(0)=0,y(0)=0,y(0)=1解:a)令 xx, x= x, 得 即 又 xx(1)=7 x(1)= x(1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x x(1)其中 x. b) 令x 则得: 且 (0)=x(0)=1, =(0)=-1, (0)= (0)=2, (0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)=,

6、其中 x=.c) 令wx, w,wy,wy,则原初值问题可化为: 且 即 w w(0)= 其中 w3. 试用逐步逼近法求方程组 x x 满足初始条件 x(0)= 的第三次近似解. 解: 习题5.20241202 02412031.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。解:令的第一列为(t)= ,这时(t)= (t)故(t)是一个解。同样如果以(t)表示第二列,我们有(t)= (t)这样(t)也是一个解。因此是解矩阵。又因为det=-t故是基解矩阵。2.考虑方程组x=A(t)x (5.15)其中A(t)是区间a上的连续nn矩阵,它的元素为a(t),i ,j=1,2

7、,na) 如果x(t),x(t),x(t)是(5.15)的任意n个解,那么它们的伏朗斯基行列式Wx(t),x(t),x(t)W(t)满足下面的一阶线性微分方程W=a(t)+a(t)+a(t)Wb) 解上面的一阶线性微分方程,证明下面公式:W(t)=W(t)e t,ta,b解:w(t)=+=+=+整理后原式变为(a+a)=(a+a)w(t)=(a(t)+a(t))w(t)b)由于w(t)= a(t)+a(t) w(t),即= a(t)+a(t)dt两边从t到t积分ln-ln=即w(t)=w(t)e,ta,b3.设A(t)为区间a上的连续nn实矩阵,为方程x=A(t)x的基解矩阵,而x=(t)为其

8、一解,试证:a) 对于方程y=-A(t)y的任一解y=(t)必有(t) (t)=常数;b)(t)为方程y=-A(t)y的基解矩阵的充要条件是存在非奇异的常数矩阵C,使(t) (t)=C.解a) (t) (t)= (t)+ (t)= (t)+ (t)A(t)又因为=-A(t) (t),所以=-(t) A(t) (t) (t)=- (t) (t)A(t)+ (t) A(t) (t)=0,所以对于方程y=-A(t)y的任一解y=(t)必有(t) (t)=常数b) “”假设为方程y=-A(t)y的基解矩阵,则 (t) (t)= (t) +(t) (t)=- A(t) (t)+ (t) A(t) )+

9、(t) A(t) (t)=- (t) A(t) +(t) A(t) =0,故(t) (t)=C“”若存在非奇异常数矩阵C,detc0,使(t) (t)=C,则 (t) (t)= (t)+ (t)=0,故(t)(t)=- (t) (t)A(t) (t)=- (t) A(t) 所以(t)=- (t) A(t), (t)=- (t) A(t)即(t)为方程y=-A(t)y的基解矩阵4.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明:(t)=(t- t)其中t为某一值. 证明:(1),(t- t)是基解矩阵。 (2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,

10、而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)5.设A(t),f(t)分别为在区间a上连续的nn矩阵和n维列向量,证明方程组x=A(t)x+f(t)存在且最多存在n+1个线性无关解。证明:设x,x,x是x=A(t)x的n个线性无关解, 是x=A(t)x+f(t)的一个解,则x+, x+, x+,都是非齐线性方程的解,下面来证明它们线性无关,假设存在不全为零的常数C,(I=1,2,n)使得+c=0,从而x+, x+, x+,在a上线性相关,此与已知矛盾,因此x+, x+, x+,线性无关,所以方程组x=A(t)x+f(t)存在且最多

11、存在n+1个线性无关解。6、试证非齐线性微分方程组的叠加原理:的解,则是方程组的解。证明: (1) (2)分别将代入(1)和(2)则 则令即证 7考虑方程组,其中 a)试验证 是的基解矩阵;b)试求的满足初始条件的解。证明:a)首先验证它是基解矩阵以表示的第一列 则故是方程的解如果以表示的第二列 我们有故也是方程的解从而是方程的解矩阵又故是的基解矩阵;b)由常数变易公式可知,方程满足初始条件的解而8、试求,其中 满足初始条件的解。解:由第7题可知的基解矩阵 则若方程满足初始条件则有若则有9、试求下列方程的通解:a)解:易知对应的齐线性方程的基本解组为这时由公式得通解为b)解:易知对应的齐线性方

12、程的基本解组为是方程的特征根故方程有形如的根代入得故方程有通解c)解:易知对应的齐线性方程对应的特征方程为故方程的一个基本解组为因为是对应的齐线性方程的解故也是原方程的一个解故方程的通解为10、给定方程其中f(t)在上连续,试利用常数变易公式,证明:a)如果f(t)在上有界,则上面方程的每一个解在上有界;b)如果当时,则上面方程的每一个解(当时)。证明:a) 上有界存在M0,使得又是齐线性方程组的基本解组非齐线性方程组的解又对于非齐线性方程组的满足初始条件的解x(t),都存在固定的常数使得从而故上面方程的每一个解在上有界b) 时,当tN时由a)的结论故时,原命题成立 11、给定方程组 (5.1

13、5)这里A(t)是区间上的连续矩阵,设是(5.15)的一个基解矩阵,n维向量函数F(t,x)在,上连续,试证明初值问题: (*)的唯一解是积分方程组 (*)的连续解。反之,(*)的连续解也是初值问题(8)的解。证明:若是(*)的唯一解则由非齐线性方程组的求解公式即(*)的解满足(*)反之,若是(*)的解,则有两边对t求导:即(*)的解是(*)的解习题5.31、 假设A是nn矩阵,试证:a) 对任意常数、都有exp(A+A)=expAexpAb) 对任意整数k,都有(expA)=expkA (当k是负整数时,规定(expA)(expA)证明:a) (A)(A)(A)(A) exp(A+A)= e

14、xpAexpAb) k0时,(expA)expAexpAexpA exp(A+A+A) expkA k0 (expA)(expA)=exp(-A) = exp(-A)exp(-A)exp(-A) exp(-A)(-k) expkA 故k,都有(expA)=expkA2、 试证:如果是=Ax满足初始条件的解,那么expA(t-t)证明:由定理8可知(t)-1(t0) (t) 又因为(t)= expAt , -1(t0)=( expAt0)-1= exp(-At0), f(s)=0,又因为矩阵 (At)(- At0)=(- At0)(At)所以 expA(t-t)3、 试计算下面矩阵的特征值及对应

15、的特征向量a) b)c) d) 解:a)det(EA)=(5)(+1)=0=5, =1对应于=5的特征向量u=, ()对应于=1的特征向量v=, ()b) det(EA)=(+1)(+2)(2)01,2,2对应于1的特征向量u1, ( 0 )对应于2的特征向量u2, ( )对应于2的特征向量u3, ( )c)det(EA)=(+1)2(3)0 1(二重),3对应于1(二重)的特征向量u, ( 0 )对应于3的特征向量v, ( )d) det(EA)=(+3)(+1)(+2)=0 1,2,3 对应于1的特征向量u1, ( 0 ) 对应于2的特征向量u2, ( ) 对应于3的特征向量u3, ( )

16、4、 试求方程组=Ax的一个基解矩阵,并计算expAt,其中A为:a) b)c) d)解:a)det(EA)=0得,对应于的特征向量为u, ( 0 )对应于的特征向量为v, ( )u,v是对应于,的两个线性无关的特征向量(t)=是一个基解矩阵 ExpAt=b) 由det(EA)=0得5,1解得u,v是对应于,的两个线性无关的特征向量则基解矩阵为(t)(0) 1(0)则expAt(t) 1(0) c) 由det(EA)=0得2,2,1 解得基解矩阵(t)1(0) 则expAt(t) 1(0)d)由det(EA)=0得3,2,2 解得基解矩阵(t)则expAt(t) 1(0)5、试求方程组=Ax的

17、基解矩阵,并求满足初始条件 解:a)由第4题(b)知,基解矩阵为 所以 b)由第4题(d)知,基解矩阵为 (t) 所以c) 由3(c)可知,矩阵A的特征值为3,1(二重) 对应的特征向量为u1,u2 解得 6、 求方程组=Axf(t)的解:解:a)令=Ax的基解矩阵为(t)解得(t), 则1(t)1(0)求得b)由det(EA)=0得1,2,3 设对应的特征向量为v1,则 (EA)v1=0,得v1 取v1,同理可得v2 ,v3 则(t)从而解得c)令=Ax的基解矩阵为(t)由det(EA)=0得1,2解得对应的基解矩阵为(t)1(t) 从而1(0)7、 假设m不是矩阵A的特征值。试证非齐线性方

18、程组 有一解形如 其中c,p是常数向量。 证:要证是否为解,就是能否确定常数向量p则p(mEA)c由于m不是A的特征值故mEA存在逆矩阵那么pc(mEA)1 这样方程就有形如的解8、 给定方程组 a) 试证上面方程组等价于方程组u=Au,其中u,A=b) 试求a)中的方程组的基解矩阵c) 试求原方程组满足初始条件x1(0)=0, x1(0)=1, x2(0)=0的解。 证:a)令 则方程组化为即uu=Au 反之,设x1=u1,x1=u2,x2=u3 则方程组化为 b)由det(EA)=0得0,1,2由 得同理可求得u2和u3取则是一个基解矩阵c)令,则化为等价的方程组且初始条件变为而满足此初始条件的解为: 于是根据等价性,满足初始条件的解为式9、 试用拉普拉斯变换法解第5题和第6题。证明:略。10、 求下列初值问题的解:解:a)根据方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论