版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020新课标1高考压轴卷数学(理)一、选择题(本题共12道小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的)1.已知集合,则AB= ( ).A. (2,3)B. 2,3)C.4,2D. (4,3) 2.已知,则( )A. B. C. D. 3.若向量,|2,若()2,则向量与的夹角为()A. B. C. D. 4.已知某几何体的三视图如图所示,则该几何体的体积为A. 8B. 12C. 16D. 245.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布,则,)A. 4.56%B.
2、 13.59%C. 27.18%D. 31.74%6.我国古代名著庄子天下篇中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则处可分别填入的是( ) A. B. C D. 7.已知变量x,y满足约束条件,则的最大值为()A. 1B. 2C. 3D. 48.九章算术中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A. 二升B. 三升C. 四升D. 五升9.在ABC中,角A、B、C所对的边分别
3、为a、b、c, ,则b=( )A. 1B. C. D. 10.若直线被圆截得弦长为4,则的最小值是( )A. 9B. 4C. D. 11.已知抛物线的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点,若,则抛物线C的方程是( )A. B. C. D. 12.已知函数,若方程有5个解,则m的取值范围是()A. B. C. D. 二、填空题(本题共4道小题,每小题5分,共20分)13.已知,且,则_14.设m为正整数, 展开式的二项式系数的最大值为展开式的二项式系数的最大值为b,若,则m=_15.已知函数有四个零点,则实数a的取值范围是_16.如图,已知六棱锥P-ABCDEF的底
4、面是正六边形,PA平面ABC,给出下列结论:;直线平面;平面平面;异面直线PD与BC所成角为45;直线PD与平面PAB所成角的余弦值为.其中正确的有_(把所有正确的序号都填上)三解答题(本大题共6小题.解答题应写出文字说明、证明过程或演算步骤)17.(本小题12分)ABC中,内角A、B、C所对的边分别为a、b、c,已知(1)求角C的大小;(2)已知,ABC的面积为6,求边长c的值.18. (本小题12分)如图,在四棱锥P-ABCD中,PD平面ABCD,ABC=BCD=90,E为PB的中点。(1)证明:CE面PAD(2)若直线CE与底面ABCD所成的角为45,求四棱锥P-ABCD的体积。19.
5、(本小题12分)已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)甲部门678乙部门5.566.577.58丙部门55.566.578.5(1)求该单位乙部门的员工人数?(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望20.
6、(本小题12分)已知椭圆的离心率为,且.(1)求椭圆的标准方程;(2)直线:与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆上,若存在,求出m的值;若不存在,说明理由21. (本小题12分)设函数.(1)求的单调区间;(2)求使对恒成立的a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选的题号涂黑.22. (本小题10分)在平面直角坐标系中,直线l的参数方程为(其中t为参数).现以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若点P坐标为
7、(1,0),直线l交曲线C于A,B两点,求的值.23. (本小题10分)已知函数(1)当时,求不等式的解集;(2)若对任意成立,求实数a的取值范围2020新课标1高考压轴卷数学(理)Word版含解析参考答案1. 答案B解析因,所以,故本题选B.2. 答案D解析因为 所以 故选D3. 答案A解析由已知可得: ,得 ,设向量a与b的夹角为 ,则 所以向量与的夹角为故选A.4. 答案A解析由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:A5. 答案B解析由题意故选B6. 答案B解析由题意,执行程序框图,可得:第1次循环:;第2次循环:;第3次循环:;依次类推,第7次循环:,此时不满足条件,推
8、出循环,其中判断框应填入的条件为:,执行框应填入:,应填入:.故选:B.7. 答案B解析画出二元一次不等式所示的可行域,目标函数为截距型,可知截距越大值越大,根据图象得出最优解为,则的最大值为2,选B.8. 答案B解析由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B9. 答案C解析因为 ,展开得 ,由正弦定理化简得 ,整理得 即,而三角形中0B,所以由余弦定理可得 ,代入解得所以选C10. 答案A解析圆的标准方程为:(x+1)2+(y2)2 =4,它表示以(1,2)为圆心、半径等于2的圆;设弦心距为d,由题意可得 22+d2=4,求得d=0,可得直线经
9、过圆心,故有2a2b+2=0,即a+b=1,再由a0,b0,可得=( )(a+b)=5+5+2当且仅当=时取等号,的最小值是9故选:A11. 答案C解析作,垂足为点D由题意得点在抛物线上,则得由抛物线的性质,可知,因为,所以所以,解得:由,解得:(舍去)或故抛物线C的方程是故选C12. 答案D解析,或,由题意可知:,由题可知:当时,有2个解且有2个解且 ,当时,因为,所以函数是偶函数,当时,函数是减函数,故有,函数是偶函数,所以图象关于纵轴对称,即当时有,所以,综上所述;的取值范围是,故本题选D.13. 答案解析由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.14.
10、答案7解析 展开式中二项式系数的最大值为,展开式中二项式系数的最大值为,因所以即:解得:15. 答案 (2,0)解析因为是偶函数,根据对称性,在上有两个不同的实根,即在上有两个不同的实根,等价转化为直线与曲线有两个交点,而,则当时,当时,所以函数在上是减函数,在上是增函数,于是,故故答案为:(2,0)16. 答案解析设正六边形长为1,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故正确.由于,而,所以直线平面不正确,故错误.易证得,所以平面,所以平面平面,故正确.由于,所以是异面直线与所成角,在中,故,也即异面直线与所成角为,故正确.连接,则,由证明过程可知平面,所以平面,所以是所
11、求线面角,在三角形中,由余弦定理得,故正确.综上所述,正确的序号为.17. 答案(1);(2).解析试题分析:(1)由已知得,化简得,故,所以,因为,所以.(2)因为,由,所以,由余弦定理得,所以18. 答案(1)见解析(2)解析解法一:(1)取PA中点Q,连接QD,QE, 则QEAB,且QE=ABQECD,且QE=CD.即四边形CDQE为平行四边形,CEQD.又CE平面PAD,QD平面PAD,CE平面PAD.(2)连接BD,取BD中点O,连接EO,CO则EOPD,且EO=PD. PD平面ABCD,EO平面ABCD. 则CO为CE在平面ABCD上的射影,即ECO为直线CE与底面ABCD所成的角
12、,ECO=45 在等腰直角三角形BCD中,BC=CD=2,则BD=2,则在RtECO中,ECO=45,EO=CO=BD=2PD=2E0=2, 四棱锥P-ABCD的体积为.解法二:(1)取AB中点Q,连接QC,QE则QEPAPA平面PAD,QE平面PADQE平面PAD, 又AQ=AB=CD,AQCD,四边形AQCD平行四迹形,则CQDADA平面PAD,CQ平面PAD,CQ平面PAD, (QE平面PAD.CQ平面PAD,证明其中一个即给2分)又QE平面CEQ,CQ平面CEQ,QECQ=Q,平面CEQ平面PAD, 又CE平面CQ,CE平面PAD. (2)同解法一.19. 答案 (1)24人;(2)
13、;(3)X的分布列见解析;数学期望为1解析(1)由题意,得到分层抽样共抽取:3+6+615名员工,其中该单位乙部门抽取6名员工,该单位乙部门的员工人数为:624人(2)由题意甲部门抽取3名员工,乙部门抽取6名员工,从甲部门和乙部门抽出的员工中,各随机选取一人,基本事件总数n18,A的睡眠时间不少于B的睡眠时间包含的基本事件(a,b)有12个:(6,5.5),(6,6),(7,5.5),(7,6),(7,6.5),(7,7),(8,5.5),(8,6),(8,6.5),(8,7),(8,7.5),(8,8),A的睡眠时间不少于B的睡眠时间的概率p(3)由题意从丙部门抽出的员工有6人,其中睡眠充足的员工人数有2 人,从丙部门抽出的员工中随机抽取3人做进一步的身体检查用X表示抽取的3人中睡眠充足的员工人数,则X的可能取值为0,1,2,P(X0),P(X1),P(X2),X的分布列为: X 0 1 2 P E(X)120. 答案(1);(2)实数m不存在,理由见解析解析(1)由题意得,解得故椭圆的方程为;(2)设,线段的中点为联立直线与椭圆的方程得,即,即,所以,即又因点在圆上,可得,解得与矛盾故实数不存在21. 答案(1)见解析;(2)解析(1)因为,其中,所以.所以,时,所以的单调递增区间为,单调递减区间为;时,所以的单调递减区间为;时,所以的单调递增区间为,单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孩子抚养费支付协议书
- 产品买卖合同书(杯子)
- 建筑施工钢材采购合同范本
- 儿童摄影合同
- 姜堰区劳动用工合同
- 中建2024建筑工程专项验收指导手册(试行)
- 高三一轮复习课件 地质构造与构造地貌 (从不同尺度)
- 高中地理选修三43旅游常识和导游基础知识练习
- 浙江省杭州市二中钱江校区2023-2024学年高一下学期寒假作业检测(开学考试)数学试卷
- 工程项目施工现场自纠自查报告
- 冠脉介入进修汇报
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 铁道运输实训总结报告
- 小学生生涯规划班会课教案设计
- 人教部编版五年级上册语文第三单元测试卷(含答案解析)
- MOOC 光纤光学-华中科技大学 中国大学慕课答案
- 抗球虫药1课件
- 儿童民航知识课件
- ESG投资与可持续金融
- 对科学施肥方法的
- 毕业生个人求职自荐信经典版
评论
0/150
提交评论