功率因数校正问题_第1页
功率因数校正问题_第2页
功率因数校正问题_第3页
功率因数校正问题_第4页
功率因数校正问题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 关于电子镇流器的功率因数校正问题的讨论关于电子镇流器的功率因数校正问题的讨论 陈传虞 摘要摘要 本文分析电子镇流器的功率因数校正问题,着重讨论了有源功率因数 校正的三种模式(峰值电流控制、固定开通时间、固定频率平均电流连续 导通模式)的工作原理,它们的优缺点及适用场合等。 关键词:关键词:无源功率因数校正 有源功率因数校正 峰值电流控制 固定开通时间 频率钳定 前(后)沿调制 断续导通、 临界导通、连续导通模式 过渡模式 前言前言 在电子镇流器中通常采用图 1a 所示的输入电路,由于电解电容器 CO的容量很大,工 作时储存电荷很多,只有输入电压超过电容上的电压时,才有输入电流,所以电流波形严

2、 重失真,仅在电压峰值附近才会出现一个电流尖脉冲(如图 1b)。这样一来,电路的功率因 数变得很低,约为 0.5 左右,输入电流谐波含量十分丰富。而根据国标 GB/T17263-2002 以 及欧洲法规 EN63000-3-2,对 25W 以上的节能灯和电子镇流器的各次谐波的含量提出了严 格要求,现有的许多电路根本无法满足这个要求。 图 1 镇流器的输入电路 为了减少镇流器输入电流的谐波失真,必须采取一些特殊措施,通常称之为功率因数 校正(PFC Power factor correction)技术来提高它的功率因数。大致说来,功率因数校正有 两种方案:无源功率因数校正(Passive PFC

3、)和有源功率因数校正(Active PFC) ,前者已有 很多资料介绍,不是本文讨论的重点,我们主要分析有源功率因数校正的三种模式,它们 的工作原理、优缺点及适用场合等。 1无源功率因数校正的原理及常用电路无源功率因数校正的原理及常用电路 无源功率因数校正的原理主要是增加输入电流的导通时间,使电源电流的波形接近电 压的正弦波形,减少它的失真。最初采用的方案是逐流电路。 图 2 无源功率因数校正电路 它用图 2(a)的电路代替图 1 的电容 CO,电源通过 VD3对电容 C1、C2充电到输入电压 峰值,每个电容电压最多为输入电压峰值之半。这样,电容可在 120范围内充电,输入电 流的时间被拉长,

4、电流为零(死区)的时间只占 33.3%。功率因数可提高到 0.9 左右,但 电容上的电压起伏很大,谐波含量很高,仍然无法满足国标 GB/T17263-2002 及欧洲 EN61000-3-2 标准对各次谐波含量(2 次到 39 次谐波)限值的要求,且灯管电流波峰系数 很大,灯功率起伏很大,对人的视力及灯管寿命都不利。 对逐流电路的改进是采用双泵电路,用图 2(b)电路来代替图 2(a)的电路,它在前者 的基础上增加 C3、C4,将高频信号进行反馈,减少了电容上直流电压的起伏,进一步减少 了电流死区时间和灯电流波峰系数,各项指标均有所提高,但仍然无法满足国标 GB/T17263-2002 对各次

5、谐波含量限值的要求。如在图 2(b)电路的基础上再采取一些改 进和补救措施,便可以达到标准的要求,图 3 就是这样一种改进了的双泵电路,目前在节 能灯及电子镇流器中有不少产品在应用它,并且通过了 3C 认证。 图 3 一种改进了的双泵电路 对双泵电路的改进还有其它的形式,只要仔细调整反馈元件及滤波电感的参数(输入 端的 EMI 滤波电路对 THD、PF 的影响很大) ,就能满足标准中关于谐波限值的要求。另有 图 4 高频泵电路 一种高频泵电路,在一些电子镇流器电路中也有采用。其具体形式如图 4,对这个电路只 要适当调整 C4、C8反馈电容值,合理选择滤波电感 LO、L1、L2的参数,也能满足关

6、于谐 波限值的要求,通过 3C 认证。它的性能在调整好参数的情况下,比图 3 电路要好。只是 电路中损耗较大,对反馈电容 C4、C8、滤波电路及电解电容器的要求较高,是其不足之处。 无源功率因数校正的电路还有一些其它形式,因为不是本文的重点,又受篇幅限制,故从 略。 二。 有源功率因数校正的基本原理有源功率因数校正的基本原理 有源功率因数校正的基本原理可用图 5 所示的简单电路来说明,它在图 1 的基础上增 加了一个关键的、起着重要作用的功率因数控制器 IC,由它控制 MOS 管 VT1的开通与关 断,使输入电流变成一连串的三角波,并且它的幅度按输入电压的正弦规律变化,就可以 大大提高电路的功

7、率因数。此电路由功率 MOS 开关管 VT1、升压电感 L、升压二极管 VD、输出电容 C0及 APFC 控制器 IC 所组成。电路的具体的工作情况如下: 图 5 APFC 工作原理示意图 (1)当开关管 VT1导通时 在 APFC 控制器输出高电平(正方波)信号的控制下使 VT1导通时,图 5 变成如图 6 所示的等效电路形式。开关管 VT1导通,相当于开关 S1接通,此时二极管因受输出直流 电压 VO的反偏而截止,相当于 S2断开。整流后在电容 C1上得到的是一个单向的正弦电压 (电容 C1的容量不能太大) ,将在电感 L 中产生电流。考虑到开关管的开关频率很高,一 般都超过 25kHZ以

8、上,因此在开关的半个周期的短时间内,输入电压 uI可近似看作不变, 电感电流上升的速率 di/dt 为常数(Ldi/dt=uI) ,电感电流直线上升,电感中储存的磁能 LiL2/2 也随电流的增加而增加。 图 6,MOS 管导通时的等效电路 当电感电流的峰值增加到与该时刻输入电压大小相对应的某一数值 ILP时,APFC 控 制器便输出低电平的开关信号,使开关管 VT1截止,电流 iL停止上升。考虑到电流是直线 上升的,有 Li/t=uI, 以 i=ILP,t=ton 分别表示三角波的上升幅度和上升时间(参看图 7) , 则有 ILP=uIton/L 可见当 ton 为固定值,则三角波的幅度 I

9、LP反映了该时刻输入电压 uI的变化。 (2)开关管 VT1截止时 图 5 电路可简化为图 7 形式。 图 7 开关管截止时等效电路 由于电感电流 iL不能突变,只能由原来的数值 ILP线性下降。电感的磁能释放出来, 与输入电压相叠加,对电解电容器 CO充电,电容上面的电压显然比输入电压高。因此这 种电路称为升压式 APFC 电路。在开关管截止时,电感电流下降,并且按线性规律直线下 降(Ldi/dt=VO-uI,在 uI近似不变的条件下,也是常数) 。一旦控制器检测到电感电流下降 到零时,它又输出控制信号,使开关管再一次导通,开始下一个开关周期。 在上述控制下,输入电流或电感电流是一串连续的直

10、线上升、直线下降的三角波,只 要三角波的峰值 ILP,能够跟随并反映出输入电压的变化,那么它的平均值,即其峰值之半, 就能按正弦规律变化,使功率因数接近于 1。图 8 是电感电流或输入电流在 APFC 控制器 控制下,电流变化的示意波形。 图 8 APFC 电路中输入电流或电感电流的示意 可见,在 APFC 控制器控制下,电感电流由零上升到一定数值(与该时刻的输入电压 瞬时值成正比)然后下降到零、又上升,如此周而复始,电流不存在为零的死区时间,因 此称之为临界导通模式(Critical conduction mode CrCM).,它是界于连续导通与断续导通 之间的临界形式或过渡形式,因此,有

11、的文献又称它为过渡模式(TM)或边界导通模式 (BCM) 。 要使功率因数接近于 1,控制器要控制两个时间点:电流到零的时间点和电流到达峰 值的时间点。对前者的控制,在各种 IC 控制器中采取相同的控制原理和手段,采用图 9 所 示电路。图中升压电感的副绕组,通过电阻接到 IC 的零电流检测端(ZCD),一旦电感电流 下降到零,电感的感应电动势改变极性,大约为-1.8V,利用这一特点,由零电流检测比较 器输出高电平信号到 RS 触发器的 S 端,让 RS 触发器翻转,PFC 控制器的驱动输出 OUT 变为高电平,正的开关信号将使外接 MOS 管开通。流过电感的电流再次由零线性上升。 图 9 零

12、电感电流检测及开通信号之取得 至于如何控制到达峰值电流的时间点则有两种方案,因而形成两类不同的 APFC 控制 器 IC,下面分别讨论之。 3峰值电流控制峰值电流控制 APFC 控制器的工作原理控制器的工作原理 峰值电流控制 APFC 电路如何控制其峰值电流可用图 10 所示的简化原理图来说明。图 中虚线围框内表示 IC 中有关部分,其余是与 IC 相接的外围电路。整流桥输出的单向正弦 电压经过电阻 R1、R2分压送到 3 脚,它反映输入电压的变化,其值大约为 24V,由升压 二极管输出的直流电压 VO也经过电阻 R3、R4分压加到 IC 内部的电压误差放大器(图中以 EA 表示)的反相输入端

13、 INV(1 脚) ,反映电感电流的信号则由外接 MOS 管的源极电阻 R8 引出, 图 10 峰值电流检测的原理图 送到电流检测端 CS(4 脚) 。4 脚经内部的 RC 滤波电路与电流检测比较器(或称峰值电流 比较器)的反相端相连,乘法器的输出 VMO则接到比较器的同相端,作为比较器的基准电 压。乘法器要在很宽的动态范围内具有很好的线性转移特性,与它的两个输入电压的乘积 成正比,即 VM0=KVM1(VM2-VREF) 考虑到乘法器的一个输入是由输出电压 VO分压得到的,在通常情况下,VO基本上变 化很小(在输出电压为 400V 时,电压变化的峰-峰值大约只有 510V 左右)接近稳定的

14、直流电压,这样乘法器的输出 VMO的大小基本上与 VM1成正比,反映了按正弦规律变化的 输入电压。因此,当流过电感的电流在 RS上产生的压降达到并超过由乘法器输出所设定的 基准阈值 VMO时,电流检测比较器将输出控制信号,送到 RS 触发器的 R 端,使 RS 触发 器翻转。这样,IC 的驱动输出 OUT 变为低电平,将外接的 MOS 管关闭,电感电流达到其 峰值不再增加。显然,在这样的条件下,峰值电流与该时刻的输入电压是成正比的。 由于乘法器输出还包括与 APFC 输出电压 VO成正比的成分,如果 VO有所变化,例如 其值变小,则由于此输入是加到误差放大器的反相输入,VM2-将上升,乘法器输

15、出 VMO变 大,电流检测比较器将延长功率开关管的导通时间,增加升压电感中储存的能量,使 VO 升高;反之,则会缩短 MOS 管的导通时间,使 VO减小,从而达到调整 VO使其值趋于稳 定的目的。这种脉宽调制工作方式,在开关电源中是十分常见的。 从以上分析可知,这种控制方式利用输入电压作为基准信号,一旦电感电流上升到基 准信号所规定的阈值以后,IC 控制器就送出关断信号,将 MOS 管关断,把三角波的电感 电流峰值控制到与输入电压成正比。故称这种方式为峰值电流控制法。 理论分析表明(见文献 1) ,在这种控制方式中,每个三角波的开通时间是不变的,而 关断时间是变化的,在输入电压低时(在过零附近

16、) ,关断时间最短,因而开关频率最高。 这带来三个问题:其一,频率高,电路中元件、特别是电感损耗大;其二,在电压过零附 近,输入电流失真大(参看图 11) ,THD 值变大;其三,一连串频率很高的三角波,具有 十分丰富的谐波含量,造成棘手的电磁干扰,所以,镇流器采用这类控制心片后,EMC 问 题比较麻烦(参看文献 2) ,要想使镇流器通过 3C 认证,必须仔细调整滤波电路才成 为了对峰值电流控制 APFC 电路有一点感性认识,这里介绍由 ST 公司推出的一种芯 图 11 在输入电压过零附近输入电流的交越失真 片 L6562,它是 L6561 的升级换代产品,它的特点是: 用双极型与 CMOS

17、混合工艺(BCD)制成 采用有专利的乘法器设计,可以减少交越失真,使输入电流的 THD 降至最低; 有很精确的可调节的输出过电压保护; 超低的启动电流70A,启动电压有回差特性; 低的静态工作电流4mA; 扩展的电源电压范围(85-270V),适应全球范围的交流电源; 1%(TJ=25)精度的内部基准电压; 推拉结构的图腾柱输出,驱动能力强,输出拉/灌电流为-600mA/+800mA,可驱动 大功率 MOS 管或 IGBT 管(按四端网络分析约定,电流流入者为正,流出为负) 。 电路适用于 300W 以下的负载。 用 L6562 片组装的二种功率因数较正电路如图 12、13 所示。两种电路允许

18、输入电压 为 85V 到 265V,是宽范围的,适应全世界范围的交流电源。图 12 输出为直流电压 400V、250W。图 13 输出为直流 400V、80W。升压变压器采用 EE25137 的磁芯(型 号为 3C85,与 PC30 相当) ,原边用 20*0.1mm 的多股漆包线绕 105 匝,电感量为 0.7mH, 副边用 0.15mm 漆包线绕 11 匝,原副边圈数之比约为 10:1。磁芯气隙为 1.5mm。其它元 件参数均示于图中。 图 12 用 L6562 组成的输入 85V265V、输出为 250W 的功率因数校正电路 图 13 用 L6562 组成的输入 85V265V、输出为

19、80W 的功率因数校正电路 四。固定开通时间的四。固定开通时间的 APFC 控制器工作原理控制器工作原理 如上所述,只要开通时间不变,输入电流就能跟踪输入电压的变化,失真很小,这就 出现了固定开通时间的 APFC 控制器,它的原理图如图 14 所示。 图 14 固定开通时间 APFC 控制器工作原理示意图 图中升压电感 L 的副绕组检测电感电流到零的时刻,通过将 RS 锁存器置 1,使开关 管开通,电感电流线性上升,其原理已在图 9 中说明过,这里不再重复。在开关管开通的 同时,锯齿波电压也开始线性上升,它与误差放大器输出的固定电压在比较器相比较,一 旦两者相等,比较器送出信号使 RS 触发器

20、(锁存器)复位,送出关断信号,将 MOS 管关 断,电感电流达到其峰值,不再上升。这种方案也能控制电感电流的峰值,而无需从整流 后的电压取样,也不用乘法器。而为了得到线性上升的锯齿电压,只要用恒流源对电容 C 充电就行了,比较简单。 下面介绍一款由仙童公司推出的固定开通时间 APFC 心片 FAN7530。 它有很强的功能,而功耗极低。 FAN7530 心片 VCC的欠电压封锁功能是:开启阈值为 12V,关闭阈值为 8.5V,VCC内部钳位电压为 22V。IC 启动电流典型值为 40A,静态工作 电流仅为 1.5mA。驱动电流高达+500/-800mA,可驱动较大功率的 MOS 管或 IGBT

21、,OUT 输出 内部接有 13V 的钳位稳压二极管,外接的功率 MOS 管栅极无需接钳位二极管。 FAN7530 有过压和过流保护功能,当引脚 1 上的电压高于 2.675V 时,过电压(0VP)比 较器将关闭功率 MOS 管。如引脚 1 上的电压低于 0.45V 时,比较器输出禁止信号,IC 的 基准电压和内部偏置电源不工作,使 IC 不能工作,维持电流只有 65A。当 MOS 管电流 太大、送到 4 脚的电压超过 0.8V 时,过电流(OCP)比较器 输出高电平, 同样也使驱动 输出 OUT 为低电平,关闭功率 MOS 管。可见,它的保护功能是很强的。 图 15 是一种用 FAN7530

22、组装成 80W 的 APFC 具体应用电路 图 15 用 FAN7530 组装的 80W APFC 电路 图中,FAN7530 锯齿电压的上升斜率由 2 脚外接电阻 R6确定,电阻 R6大,则锯齿电 压上升速率慢,MOS 管开通时间长,反之则短。电阻 R5能改变充电电流的大小,对降低 THD 有影响,适当调节之,可以减少输入电压过零附近的电流失真,改善电路的 THD 性 能参数。这是因为电阻 R5接到升压电感的副绕组,而副绕组上的电压在 MOS 管导通时与 输入电压的负值成正比,这样流过电阻 R5的电流与输入电压成正比。输入电压高,电流大、 开通时间短,而在输入电压过零附近,开通时间长(参看后

23、面图 16) ,从而改善了 THD 失 真。流过 R5的电流以比流入 R6的电流大 12 倍为好,可通过试验确定其阻值。 峰值电流控制型 APFC 控制器以及固定开通时间 APFC 控制器大多数是八条引脚,各 条引脚的功能和使用方法虽略有不同,从本质上讲,它们属于同一类的心片,它们工作原 理的共同的特点是:(1)开通时间基本上是不变的;(2)开关频率在输入线电压的半周 内是变化的,在线电压达到峰值时,开关频率最低;在输入线电压过零附近,开关频率最 高。 (3)流过电感电流是临界导通的,电流由零上升到最大值,然后下降,当下降到零时, 再一次线性上升。中间没有死区时间。 (4)这类控制器的外接元件

24、的连接方式基本上也是 一样的,只是根据电压误差放大器的性能不同,补偿网络的接法有所不同,如为跨导型运 算放大器,则其输出端(2 脚)的补偿网络(可能是电容或 RC 网络)可以直接接地;如 非跨导型,则其输出端的补偿网络应接误差放大器的反相端(1 脚) 。另外,IC 的 3 脚的接 法,也有所不同。根据心片类型而定。 这类控制器的优点是电路比较简单,成本较低,品种多,产品不断升级换代,性能愈 来愈好(新产品与老产品引脚兼容) ,在性价比上可供选择的产品类型多,选择余地大。这 类产品大多应用在 300W 以下、特别是 100W 左右的的电子镇流器中。在做电子镇流器时, 通常选用这类 APFC 器件

25、。在下面的表中给出若干开通时间不变的 APFC 心片。 我们在选用心片时,一定要了解 IC 的功能,各个引脚的用处,以及外接元器件的大致 范围,参数变化会带来什么样的影响等。 表 1 开通时间不变的 APFC 心片 产品型号封装形式说明厂商 KA7525 KA7526 双列直插 DIP-8 表面贴装 SO 等。 -8 峰值电流控制三星公司 L6561 L6562 DIP-8 SO-8 峰值电流控制ST 公司 OB6561P OB6563 DIP-8 SO-8 峰值电流控制昂宝电子(On-Bright) FAN7527峰值电流控制 FAN7528 不带乘法器、固定开通 时间、双输出 FAN752

26、9不带乘法器、固定开通时间 FAN7530 DIP-8 SO-8 不带乘法器、固定开通时间 美国仙童公司 MC33262/34262 MC33232/34232 DIP-8 SO-8 MC33268/34268DIP-16、SO-16 峰值电流控制、误差放大器 为跨导型,输出为电流 同上,但功能更强,THD 小 美国 On-Semi 公司 美国 Motorola 公司 NCP1601DIP-8功能同上,使用方便On-Semi 公司 UC1852/2852/3852DIP-8、SO-8不带乘法器、固定开通时间美国尤尼创公司 TDA4862DIP-8、SO-8峰值电流控制美国 Infinen 公司

27、 SA7527DIP-8、SO-8峰值电流控制杭州士兰微电子公司 这类心片的缺点是:开关频率高,电磁干扰厉害,在交流输入电压过零附近,输入电 流会出现交越失真,使 THD 变大,对 EMC 的要求高。 为了减少输入电流的交越失真,目前各公司采取各自不同的有专利保护的方法;例如, 美国 Motorola 公司在心片 MC33368 里采用频率钳定法,在电压过零附近,采取措施使开 关管的关断时间保持为常数,延长死区时间,而不问零电流检测是否已检测到电流为零。 这样开关频率不会很高。实际上电路在输入电压低时工作于断续导通方式,在输入电压高 时才工作于临界导通方式。美国仙童公司在心片 FAN7529、

28、FAN7530 里采取措施,使锯齿 电压的上升速率发生变化,改变开通时间,在过零点附近,开通时间长,而在电压峰值附 近,开通时间短一些(见图 16)。这样一来也能降低交越失真。昂宝电子在芯片昂宝电子在芯片 OB6561P 与与 OB6563 里采用在输入电压过零点附近通过改变乘法器的输出级电流比较器的里采用在输入电压过零点附近通过改变乘法器的输出级电流比较器的 offset 来来 延长导通时间的办法来降低交越失真从而提高延长导通时间的办法来降低交越失真从而提高 THD。 图 16 开通时间随输入电压 VI变化 4固定开关频率平均电流型固定开关频率平均电流型 APFC 控制器控制器 还有一种 A

29、PFC 控制器电路,流过电感的电流并不下降到零,只是围绕输入电流平均 分值下降到某一最小值,然后开始上升,上升到某一最大值,又开始下降,如此周而复始。 这样电流是围绕输入电流平均值变化,如图 17 所示。图(a)是流过电感电流的瞬时变化的 示意图,图 b)是它的实际波形。由于电流只围绕输入电流的平均值上下起伏,在小范围内 变化,波动很轻,所以电磁干扰小,电流有效成分多,输出功率大。 图 17 连续传导模式中的电感电流波形 这种模式称为连续导通模式(Continuous Conduction Mode CCM)它适用于输出功率 大、超过 300W 以上的场合。工作比较复杂,APFC 控制器的方框

30、图如图 18 所示。 这种固定频率、平均电流型 APFC 控制器与前述 IC 有所不同,除含有电压误差放大器、 乘法器、脉宽调制(PWM)比较器、MOS 管栅极驱动器外,还含有检测电流的电流放大 器和频率固定的锯齿电压振荡器。在这里乘法器被称作增益调制器,它是 APFC 控制器中 最为关键的核心部件,它的输出将提供确定开关管开关占空比的参考电压,它有三个输入, 分别是: (1)代表瞬时输入电压(包括电压的大小和形状)的电流,整流后的 AC 电压通过电 阻 R1变为电流 IAC 送到 IC 的 ISENSE脚(5 脚,有的资料称此脚为 IAC 脚) ,增益调制器对 此电流的响应呈线性关系。这个分

31、量最重要。检测电感电流的信号就叠加在与它成正比的 信号上面。 (2)电压误差放大器 EA 的输出 EAOUT,增益调制器的响应与它成线性关系。由 APFC 控制器升压后的直流电压 VO,用电阻 R4、R5分压后加到误差放大器 EA 的反相输入 端 INV 脚(7 脚) ,放大器输出 EAOUT加到增益调制器的输入端。其作用同临界导通(过 渡)模式中直流电压的反馈用途是一样的,也是为了保证输出电压的恒定。 (3)与输入 AC 电压有效值 VRMS成正比的电压,AC 电压在整流之后变为单向的脉 动电压,经电阻 R2、R3分压、C1滤波后加到 IC 的 VRMS脚(8 脚) (实际上它反映了输入 电

32、压的平均值) ,增益调制器的输出与 VRMS2成反比(当 VRMS很小时除外,以免输入电压 过低时线路元件的功率损耗太大) 。增益调制器的输出除以 VRMS2后,使得在整流半个周期 中,反映输入电流的 IAC 的变化幅度小一点。 增益调制器的输出为电流 IGM,它与三个输入之间的关系为: IGM=kIACVAOUT/VRMS2=KIACVAOUT 式中,式中,K 代表代表 增益调制器对增益调制器对 VRMS的转移系数,或称的转移系数,或称 K 因子,它不是一个常数,而是因子,它不是一个常数,而是 随随 VRMS的变化而变化的。制造厂家会给出的变化而变化的。制造厂家会给出 K 随输入电压有效值(

33、或者更正确地讲,是输随输入电压有效值(或者更正确地讲,是输 入到入到 VRMS 脚的电压)变化的关系曲线。脚的电压)变化的关系曲线。可见,在连续导通模式中,增益调制器的输出基 本上是幅度较小的、反映输入电流平均值的信号,它的大小和形状和半个正弦波差不多, 除以 VRMS2后幅度被压平了。增益调制器的输出电流加到电流误差放大器的同相端 IA+, 变为电压信号,电感电流取样电阻 RS上的信号则送到电流误差放大器的两个输入端 IA+、IA-,两种信号相加,经电流误差放大器放大后,送到 PWM 比较器的反相端(或同 相端,根据需要而定) ,作为基准电压(或称参考电压) 。显然,这个基准电压信号是在压

34、缩了的输入电流平均值上加上由电阻 RS上送来的三角波。考虑到 APFC 控制器的开关频率 是固定的高频,一般为 100kHZ,在几个开关周期的短时间里输入电流基本上来不及化,所 以加到 PWM 比较器的同相端的信号在短时间内看是一条在水平线上上下起伏的三角波。 它与 PWM 比较器的另外一个输入、即锯齿电压振荡器输出的线性上升电压相比较,在其 输出端产生占空比受到控制的脉冲开关信号,以便驱动功率开关管。 图 18 固定频率平均电流连续导通模式电路的方框图 这类 APFC 控制器由于开关频率是固定的,只要控制了开关管的开通时间(三角波的 上升时间) ,那么它的关断时间(三角波的下降时间)就自然确

35、定了,无需由电路上另加控 制,实际上只要控制开关管的开关占空比就可以了。在这里,驱动脉冲的占空比是变化的, 占空比取决于 AC 输入电压变化情况,理想的情况是让它按正弦脉宽调制(SPWM)变化, 使输入电流按输入电压变化,得到接近于 1 的 PF 值。 对功率开关管开关脉冲的占空比的控制方法有两种,即前沿调制(Leading Edge Modulation)或后沿调制(Trailing Edge Modulation)。 在下面的分析中,假定在下面的分析中,假定 PWM 比较器输出的脉冲高电平有效,使比较器输出的脉冲高电平有效,使 IC OUT 端输出高端输出高 电平信号,令外接电平信号,令外

36、接 MOS 管开通。由图管开通。由图 19 可知,如果基准电压加到可知,如果基准电压加到 PWM 比较器的同相端,比较器的同相端, 而锯齿电压加到它的反相端,当基准电压在锯齿电压以上时,而锯齿电压加到它的反相端,当基准电压在锯齿电压以上时,PWM 比较器输出高电平,比较器输出高电平, 送出正脉冲信号。这时,称为后沿调制。不难看出,基准电压越高,开通时时间送出正脉冲信号。这时,称为后沿调制。不难看出,基准电压越高,开通时时间 ton 越长,越长, 外接外接 MOS 管导通时间也愈长。管导通时间也愈长。 在图在图 18 的原理图中,基准电压加到的原理图中,基准电压加到 PWM 比较器的反相端,而锯

37、齿电压加到它的同比较器的反相端,而锯齿电压加到它的同 相端,与图相端,与图 19 恰好相反,因此,它属于前沿调制。在恰好相反,因此,它属于前沿调制。在 PWM 比较器输出方波控制下,比较器输出方波控制下,RS 触发器翻转,触发器翻转,Q=0,IC 的的 14 脚脚 OUT 将输出高电平,使外接的将输出高电平,使外接的 MOS 管导通。管导通。 图 19 后沿脉宽调制示意图及电感电流波形通 为了便于说明问题,没有画出基准电压中的三角波,只用电压缓慢变化来反映基准电 压的变化,以说明开通时间的变化。实际的基准信号应该如图 20 所示。 图 20 平均电流连续导通模式中基准信号示意图 通过观察图 2

38、0,不难理解基准电压不能在输入电流大范围波动的基础上再加上三角波, 那样很难同幅度有限的锯齿波作比较,所以增益调制器的输出必须除以 VRMS2,以压缩反 映输入电流的 IAC 的幅度。国外有的文献认为除以 VRMS2是为了使 IC 能在输入线电压较 宽的范围内使用,我认为这个作用即便有,也不是主要的。 在开关管导通时,电感电流跟踪输入交流电压的变化,此时升压二极管截止,由输出 电容为负载供电。当开通脉冲结束后,开关管关断,电感电流线性减少,但不会下降到零, 因为开关的周期是固定的,经过一段时间后,脉宽调制器必然又会输出正脉冲,使开关管 再次导通了。在交流电压的半周内,在输入电流小时,开通时间短

39、一些,三角波上升小一 些,下降也小一些;在输入电流峰值附近,开通时间长一些,三角波的上升幅度大一些, 下降幅度也稍大一些,开关脉冲的宽度是按正弦调制的,可称为正弦脉宽调制,得到如图 19b 所示的电感电流包络变化的波形。电感电流的平均值跟踪输入电压的变化,按正弦波 规律变化,使功率因数接近于 1。这种固定频率、平均电流连续导通模式的 APFC 工作的 优点是:电感电流起伏小,电感的损耗低,电磁干扰轻,适用于大功率电子镇流器中,缺 点是线路复杂,外围元器件多,价格也较贵。 下面介绍仙童公司的平均电流、连续导通模式的 PFC 控制器 FAN4810,它的特点是: 采用平均电流、前沿调制、连续导通模

40、式的 PFC 控制方式,PF 值接近 1,谐波失 真很小; 通过输出电压的反馈电压 VFB对输出直流电压过高、过低和开路三种故障 (Trifault)进行检测并提供保护,提高了 PFC 电路的可靠性,使它符合 UL1950 的安全标准。 当 VFB超过 2.75V 时,PFC 输出驱动器关闭,如果 VFB没有降低到 2.5V 以下,PFC 是不会 重新启动的。OVP 比较器有 250mV 的回差电压,以提高其抗干扰能力; 有过电压保护、输入线路电压过低(Brown-out condition)保护(或直译作节电保 护)和 VCC欠电压封锁和软启动功能,可以防止没有负载时输出电压失控; 低功耗,

41、启动电流为 200A,工作电流为 5.5mA; 改进了电流输入的增益调制器的性能,使之有很宽的共模范围,其抗噪声能力强; 电流误差放大器的跨导随输入电压的增加而加大,以适应 PFC 快速响应的要求; 输出为推拉结构,输出电流为 1A,输出电压的幅度在 IC 内部被限幅在 17V 以内; 内部基准电压为 7.5V; 图 21 是用 FAN4810 组装的 125W、385V 的 APFC 电路,其元件参数均示于图中。 图 21 用 FAN4810 组装的 125W APFC 电路 表 2 给出若干公司生产的固定频率、平均电流、连续导通模式的 APFC 心片,供设计、 生产大功率镇流器时参考,如需更多的资料,可从各个公司的网站上查阅。 表 2 固定频率、平均电流、连续导通模式的 APFC 心片 产品型号产品型号封装形式封装形式说明说明生产厂家生产厂家 U

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论