版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3二次函数与一元二次方程、不等式第1课时一元二次不等式及其解法学 习 目 标核 心 素 养1.掌握一元二次不等式的解法(重点).2.能根据“三个二次”之间的关系解决简单问题(难点).通过一元二次不等式的学习,培养数学运算素养.1一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2一元二次不等式的一般形式(1)ax2bxc0(a0)(2)ax2bxc0(a0)(3)ax2bxc0(a0)(4)ax2bxc0(a0)思考1:不等式x2y20是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式3一元二次不等式的解
2、与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集思考2:类比“方程x21的解集是1,1,解集中的每一个元素均可使等式成立”不等式x21的解集及其含义是什么?提示:不等式x21的解集为x|x1,该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立4三个“二次”的关系设yax2bxc(a0),方程ax2bxc0的判别式b24ac判别式000解不等式y0或y0的步骤求方程y0的解有两个不相等的实数根x1,x2(x1x2)有两个相等的实数根x1x2没有实数根画函数yax2bxc(a0)的图象得等的集不式解y0x|xx1_或xx2
3、Ry0x|x1xx2思考3:若一元二次不等式ax2x10的解集为R,则实数a应满足什么条件?提示:结合二次函数图象可知,若一元二次不等式ax2x10的解集为R,则解得a,所以不存在a使不等式ax2x10的解集为R.1不等式35x2x20的解集为()A.B.C.DRC35x2x202x25x30(x3)(2x1)0x3或x.2不等式3x22x10的解集为()A.B.C DRD因为(2)243141280,所以不等式3x22x10的解集为R.3不等式x22x52x的解集是_x|x5或x2x,得x24x50,因为x24x50的两根为1,5,故x24x50的解集为x|x54不等式3x25x40的解集为
4、_原不等式变形为3x25x40.因为(5)2434230,所以3x25x40无解由函数y3x25x4的图象可知,3x25x40;(2)4x218x0;(3)2x23x20,所以方程2x27x30有两个不等实根x13,x2.又二次函数y2x27x3的图象开口向上,所以原不等式的解集为.(2)原不等式可化为20,所以原不等式的解集为.(3)原不等式可化为2x23x20,因为942270;(2)x24x40;(3)x22x30.解(1)0,方程2x23x20的根是x1,x22,不等式2x23x20的解集为.(2)0,方程x24x40的根是x1x22,不等式x24x40的解集为.(3)原不等式可化为x
5、22x30,由于0,方程x22x30无解,不等式x22x30的解集为R.(4)原不等式可化为3x25x20,方程3x25x20的两根为x1,x21,不等式3x25x20的解集为.含参数的一元二次不等式的解法【例2】解关于x的不等式ax2(a1)x10.思路点拨对于二次项的系数a是否分a0,a0三类进行讨论?当a0时,是否还要比较两根的大小?解当a0时,原不等式可化为x1.当a0时,原不等式可化为(ax1)(x1)0.当a0,1,x1.当a0时,原不等式可化为(x1)0.若1,则x1,即0a1,则1x.综上所述,当a1;当0a1时,原不等式的解集为.解含参数的一元二次不等式的一般步骤提醒:对参数
6、分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并2解关于x的不等式:ax222xax(a0)解原不等式移项得ax2(a2)x20,化简为(x1)(ax2)0.a0,(x1)0.当2a0时,x1;当a2时,x1;当a2时,1x.综上所述,当2a0时,解集为;当a2时,解集为x|x1;当a0、y0时自变量x组成的集合,亦即二次函数yx22x3的图象在x轴上方时点的横坐标x的集合x|x3;同理,满足y0时x的取值集合为x|1x0(a0)或ax2bxc0)是函数yax2bxc(a0)的一种特殊情况,它们之间是一种包含关系,也就是当y0时,函数yax2bxc(a0)就转化为方程,当y0或y
7、0的解集分别是什么?观察结果你发现什么问题?这又说明什么?提示:方程x22x30的解集为1,3不等式x22x30的解集为x|x3,观察发现不等式x22x30解集的端点值恰好是方程x22x30的根3设一元二次不等式ax2bxc0(a0)和ax2bxc0)的解集分别为x|xx2,x|x1xx2(x10(a0)和ax2bxc0)的解集分别为x|xx2,x|x1xx2(x10的解集为x|2x3,求关于x的不等式cx2bxa0的解集为x|2x3可知,a0,且2和3是方程ax2bxc0的两根,由根与系数的关系可知5,6.由a0知c0,故不等式cx2bxa0,即x2x0,解得x,所以不等式cx2bxa0的解
8、集为x|2x3可知,a0,且2和3是方程ax2bxc0的两根,所以ax2bxca(x2)(x3)ax25ax6ab5a,c6a,故不等式cx2bxa0,即6ax25axa06a0的解集解由根与系数的关系知5,6且a0.c0,即x2x0,即x2x0的解集为x|2x3变为“关于x的不等式ax2bxc0的解集是.求不等式cx2bxa0的解集解法一:由ax2bxc0的解集为知a0.又20,则c0.又,2为方程ax2bxc0的两个根,.又,ba,ca,不等式变为x2xa0,即2ax25ax3a0.又a0,2x25x30,所求不等式的解集为.法二:由已知得a0 且2,2知c0,设方程cx2bxa0的两根分
9、别为x1,x2,则x1x2,x1x2,其中,x13,x2.不等式cx2bxa0的解集为.已知以a,b,c为参数的不等式(如ax2bxc0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;(3)约去 a,将不等式化为具体的一元二次不等式求解.1解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:化不等式为标准形式:ax2bxc0(a0)或ax2bxc0(a0);求方程ax2bxc0(a0)的根,并画出对应函数yax2bxc图象的
10、简图;由图象得出不等式的解集(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解当m0),一根(0),无根(0)(3)关于不等式对应的方程根的大小的讨论:x1x2,x1x2,x1x2.3由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.1思考辨析(1)mx25x0,则一元二次不等式ax210无解()(3)若一元二次方程ax2bxc0的两根为x1,x2(x1x2),则一元二次不等式ax2bxc0的解集为x|x1x0的解集为R.()提示(1)错误当m0时,是一元一次不等式;当m0时,是一元二次不等式(2)错误因为a0,所以不等式ax210恒成立,即原不等式的解集为R.(3)错误当a0时,ax2bxc0的解集为x|x1xx2,否则不成立(4)正确因为(2)2120的解集为R.答案(1)(2)(3)(4)2设a1,则关于x的不等式a(xa)0的解集为_因为a1,所以a(xa)0.又aa,所以x或xa.3已知关于x的不等式ax2bxc0的解集为_由题意,2,是方程ax2bxc0的两个根且a0,即为2x25x20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版股权转让价款调整及补充合同版B版
- 2024年度学校校园公共自行车租赁服务合同3篇
- 2024年度高端医疗器械租赁及维护服务合同
- 2024版个人房屋租赁合同样本下载6篇
- 2024年标准版预付款采购保障合同模板版B版
- 2024年度软件开发合同:软件开发公司与企业用户之间的软件定制与技术支持3篇
- 2024年度企业员工薪酬福利设计与调整合同6篇
- 2024版学校国际交流项目合同2篇
- 2024年度填土施工专用合同条款2篇
- 2024威海房产买卖过户手续全流程电子合同3篇
- 我的家乡河北保定城市介绍课件
- 小学英语-六上U6 Read and write教学设计学情分析教材分析课后反思
- 基于Java的图书管理系统的设计与应用
- 新视野大学英语(第四版)读写教程1(思政智慧版) 课件 Unit 4 Social media matters Section A
- 同轴终端负载的介绍
- 2023秋国开《思想道德与法治》终考任务一之★范文二观看《红海行动》有感
- 小学心理健康教育课小学生心理健康看谁记得快又牢教学课件
- 部编人教版五年级上册语文全册说课稿
- 湖北黄冈麻城市2022-2023学年第一学期期末教学质量监测一年级语文试卷
- 小学语文跨学科学习任务群学习任务设计策略
- 2019人教版高一英语新教材必修三单词表(默写检测)
评论
0/150
提交评论