



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、正弦定理和余弦定理复习课教学设计教材分析学情分析教学目标教学方法重点难点教学策略这是高三一轮复习, 内容是必修 5 第一章解三角形。 本章内容准备复习两课时。 本节课是第一课时。 标要求本章的中心内容是如何解三角形, 正弦定理和余弦定理是解三角形的工具, 最后应落实在解三角形的应用上。 通过本节学习, 学生应当达到以下学习目标:( 1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形 . ( 2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。本章内容与三角函数、向量联系密切。作为复习课一方面将本章知识作一个梳理, 另一方面通过整理归纳帮助学生进一步达到相应的学
2、习目标。学生通过必修 5 的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题, 怎样合理选择定理进行边角关系转化从而解决三角形综合问题, 学生还需通过复习提点有待进一步理解和掌握。知识目标:(1)学生通过对任意三角形边长和角度关系的探索, 掌握正弦、余弦定理的内容及其证明方法; 会运用正、 余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。(2)学生学会分析问题,合理选用定理解决三角形综合问题。能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力, 培养学生合情推理探索数学规律的数学思维能力。情
3、感目标:通过生活实例探究回顾三角函数、 正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣 , 并体会数学的应用价值,在教学过程中激发学生的探索精神。探究式教学、讲练结合1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。1、重视多种教学方法有效整合;2、重视提出问题、解决问题策略的指导。3、重视加强前后知识的密切联系。4、重视加强数学实践能力的培养。.5、注意避免过于繁琐的形式化训练6、教学过程体现“实践认识实践”。设计意图:学生通过必修 5 的学习,对正弦定理、 余弦定理的内容已经了解, 但对于如何灵活运用定理解决实际问题, 怎样合理
4、选择定理进行边角关系转化从而解决三角形综合问题, 学生还需通过复习提点有待进一步理解和掌握。 作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、 余弦定理等知识和方法解决三角形综合问题和实际应用问题。数学思想方法的教学是中学数学教学中的重要组成部分, 有利于学生加深数学知识的理解和掌握。 虽然是复习课, 但我们不能一味的讲题, 在教学中应体现以下教学思想: 重视教学各环节的合理安排:设疑探究拓展实践循环此流程在生活实践中提出问题, 再引导学生带着问题对新知进行探究, 然后引导学生回顾旧知识与方法, 引出课题。 激发学生继续学习新知的
5、欲望, 使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。重视多种教学方法有效整合, 以讲练结合法、 分析引导法、 变式训练法等多种方法贯穿整个教学过程。重视提出问题、解决问题策略的指导。重视加强前后知识的密切联系。对于新知识的探究 ,必须增加足够的预备知识 ,做好衔接。要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。注意避免过于繁琐的形式化训练。从数学教学的传统上看解三角形内容有不少高度技巧化、 形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。二、实施教学过程(一) 创设情境、揭示提出课题创设情引例:要测量南北
6、两岸A、 B 两个建筑物之间的距离,在南岸选取相距A 点境,提出实际应用3km的 C 点,并通过经纬仪测的BCA45 ,BAC75 ,你能计算出 A、问题,揭B 之间的距离吗?若人在南岸要测量对岸B、D两个建筑物之间的距离, 该如何进示课题.行?DBCA(二) 复习回顾、知识梳理1 正弦定理:abcR R为外接圆半径)sin A sin Bsin C2 (正弦定理的变形:(1) a : b : csin A; sinB : sinC(2) a 2Rsin A; b2Rsin B; c2Rsin C利用正弦定理,可以解决以下两类有关三角形的问题 .(1)已知两角和任一边,求其他两边和一角;(2)
7、已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)2余弦定理:a2=b2+c22bccosA;b2=c2+a22cacosB;c2=a2+b22abcosC.cosA= b2c2a2;2bca2c 2b2;cosB=2aca 2c2b2cosC=.2ac利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.学生在探究问题时发现是解三角形问题,通过问答将知识作一梳理。.3三角形面积公式:(三) 自主检测、知识巩固学生通过课前预热1.中,A30,则C_;1.2.3. 的ABCa 10c10 3快速作2.AB
8、C中, a : b : c5: 7: 8,则B_;答,对正余弦定理3.中, 2A2B2Csin Bsin C,则A _的基本运ABCsinsinsin用有了一定的回顾(四)典例导航、知识拓展【例 1】 ABC 的三个内角 A、B、C 的对边分别是 a、b、c,如果 a2(b+c), 学生探讨求证: A=2B.=b剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边 .证明:用正弦定理, a=2RsinA,b=2RsinB,c=2RsinC,代入 a2 (b+c)中,=b得 sin2A=sinB(sinB+sinC) sin2Asin2B=sinBsinC因为 A、B、C 为三角形的三内角
9、, 所以 sin(A+B) 0.所以 sin(AB)=sinB.知识的关所以只能有 A B=B,即 A=2B.联与拓展评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解 .思考讨论 :该题若用余弦定理如何解决?【例 2】已知 a、b、c 分别是 ABC的三个内角 A、B、C 所对的边,0(1)若 ABC的面积为, c=2,A=60 , 求边 a,b 的值;(2)若 a=ccosB, 且 b=csinA, 试判断 ABC的形状。(五) 变式训练、归纳整理【例 3】已知 a、 b、 c 分别是 ABC的三个内角 A、B、C 所对的边,若 bcosC=(2a-c)cos
10、B(1) 求角 B(2) 设 , 求 a+c 的值。剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合, 利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2 类似解决。此题分析后由学生自己作答,利用实物投影集体评价,再做归纳整理。(解答略)课时小结 (由学生归纳总结,教师补充)1. 解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理正余弦定理与三角形内角和定理,面积公式的综合运用对学生来说也是难点,尤其是根据条件判断三角形形状。此处列举例 2让学生进一步体会如何选择定理进行边角互化。.2. 根据所给
11、条件确定三角形的形状,主要有两种途径:化边为角;化角为边.并常用正余弦定理实施边角转化。3. 用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长。4. 应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。5. 正余弦定理与三角函数、向量、不等式等知识相结合,综合运用解决实际问题。课后作业:材料三级跳本课是在学生学习了三角函数、 平面几何、平面向量、 正弦和余弦定理的基础上而设置的复习内容, 因此本课的教学有较多的处理办法。 从解三角形的问题出发,对学过的知识进行分类, 采用的例题是精心准备的, 讲解也是至关重要的。一开始的复习回顾学生能够很好的回答正弦
12、定理和余弦定理的基本内容, 但对于两个定理的变形公式不知, 也就是说对于公式的应用不熟练。 设计中的自主检测帮助学生回顾记忆公式, 对学生更有针对性的进行了训练。 学生还是出现了问题,在遇到第一个正弦方程时,是只有一组解还是有两组解,这是难点。例 1、例 2 是常规题,让学生应用数学知识求解问题,可用正弦定理,也可用余弦定理,帮助学生巩固正弦定理、余弦定理知识。本节课授课对象为高三的学生, 上课氛围非常活跃。考虑到这是一节复习课,学生已经知道了定理的内容,没有经历知识的发生与推导,所以兴趣不够, 较沉闷。奥苏贝尔指出, 影响学习的最重要因素是学生已经知道了什么,我们应当根据学生原有的知识状况去进行教学。因而,在教学中,教师了解学生的真实的思维活动是一切教学工作的实际出发点。教师应当 接受 和 理解 学生的真实思想,尽管它可能是错误的或幼稚的,但却具有一定的 内在的 合理性,教师不应简单否定,而应努力去理解这些思想的产生与性质等等,只有真正理解了学生思维的发生发展过程, 才能有的放矢地采取适当的教学措施以便帮
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026年金属制品修理行业的高性能技术与发展趋势
- 2025湖北恩施州鹤峰巧才劳务派遣有限公司招聘19人笔试参考题库附带答案详解
- 追梦(教学设计)2024-2025学年初三上学期教育主题班会
- 数据合并与整合试题及答案
- 汽车维修与保养技术测试题及答案集
- 安徽中医药大学第一附属医院招聘笔试真题2024
- 九年级化学下册 第8单元 实验活动4《金属的物理性质和某些化学性质》教学设计 (新版)新人教版
- 山西经济版信息技术小学第三册《大事小情话节约》教学设计
- Module 2 Unit 1 I helped my mum (教学设计)-2024-2025学年外研版(一起)英语四年级上册
- 绿色能源产业风能发电项目实施方案研究报告
- 大数据分析和可视化平台使用手册
- 2025年杭州医学院考研试题及答案
- 2025年骨科入科考试题及答案
- 2025年山西工程职业学院单招职业倾向性测试题库含答案
- 术前预防感染
- 生产设备设施-射线探伤-安全检查表
- 2024重组胶原蛋白行业白皮书
- 临床药物治疗学知到智慧树章节测试课后答案2024年秋湖南中医药大学
- 【MOOC】压力与情绪管理-四川大学 中国大学慕课MOOC答案
- 政治理论应知应会100题
- 冒险岛申诉保证书
评论
0/150
提交评论