初一数学下册知识点(详细版),推荐文档_第1页
初一数学下册知识点(详细版),推荐文档_第2页
初一数学下册知识点(详细版),推荐文档_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第五章 相交线与平行线一、知识点5.1 相交线初一数学(下)平面几何部分5.1.1 相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有 4 对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有 2 对对顶角。对顶角相等。5.1.2 5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。注意:垂线是一条直线。具有垂直关系的两条直线所成的 4 个角都是 90。垂直是相交的特殊情况。垂直的记法:ab,abcd。画已知直线的垂线有无数条。

2、过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。5.2 平行线5.2.1 平行线在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:ab。在同一平面内两条直线的关系只有两种:相交或平行。平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2 直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这

3、样的两个角叫做内错角。两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法:方法 1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等, 两直线平行。方法 2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等, 两直线平行。方法 3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补, 两直线平行。5.3 平行线的性质平行线具有性质:性质 1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质 2 两条平行线被

4、第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。性质 3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4 平移把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。图形的这种移动,叫做平移变换,简称平移。第七章 三角形一、知识点7.1 与三角形有关的线段7.1.1 三角形的边由不在同一条直线上的三条线

5、段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。顶点是 a、b、c 的三角形,记作“abc”,读作“三角形 abc”。三角形两边的和大于第三边。7.1.2 三角形的高、中线和角平分线7.1.3 三角形的稳定性 三角形具有稳定性。7.2 与三角形有关的角7.2.1 三角形的内角三角形的内角和等于 180。7.2.2 三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。7.3 多边形及其内角和7.3.1 多边形在平面内,由一些线段首尾顺次相接组成的图

6、形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n 边形的对角线公式:1/2n(n-3)从 n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。各个角都相等,各条边都相等的多边形叫做正多边形。7.3.2 多边形的内角和n 边形的内角和公式:180(n2) 多边形的外角和等于 360。7.4 其他1. 判断三条线段能否组成三角形。a+bc(a b 为最短的两条线段)a-bc (a b 为最长的两条线段)2. 第三边取值范围:ab c ab 如两边分别是 5 和 8 则第三边取值范围为 3x13.3. 对应周长取值范围若两边分别为 a,b 则周长的取

7、值范围是 2al2(ab)a 为较长边。如两边分别为 5 和 7 则周长的取值范围是 14l24.4. 三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。5. “三线”特征:三角形的中线平分底边。分得两三角形面积相等并等于原三角形面积的一半。分得两三角形的周长差等于邻边差。6. 直角三角形:两锐角互余。30 度所对的直角边是斜边的一半。三条高交于三角形的一个顶点。a=bc a=bc7. 相关命题:1 三角形中最多有 1 个直角或钝角,最多有 3 个锐角,最少有 2 个锐角。2 锐角三角形中最大的锐角的取值范围是 60x a x b

8、不等式组的解集是 x ax a x b的组解集是 x bax b不等式组的解集是 a x bx a x ba注意:在数轴上表示a 不等式的解集时,要注意空圈和实点.注意:ab0ab0 0 a 0 或a 0b 0 0 或 a 0 ;bb 0注意:ab=0 a=0 或 b=0;a m a=m .x + y 0 xya m、 是正数,xy 0x + y 0x + y 0 xy 0x + y 0 xy 0x、y是负数,x、y异号且正数绝对值大, x、y异号且负数绝对值大 .列方程解应用题的常用公式:(1) 行程问题: 距离=速度时间速度= 距离;时间时间= 距离速度(2) 工程问题: 工作量=工效工时

9、工效 = 工作量工时工时 = 工作量 ;工效(3) 比率问题: 部分=全体比率比率= 部分全 体 全体= 部分 ;比率(4) 顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5) 商品价格问题: 售价=定价折 1,10利润=售价-成本,利润率= 售价- 成本100% ; 成本(6) 周长、面积、体积问题:c 圆=2r,s 圆=r2,c 长方形=2(a+b),s 长方形=ab, c正方形=4a,s 正方形=a2,s 环形=(r2-r2),v 长方体=abc ,v 正方体=a3,v 圆柱=r2h ,v圆锥= 1 r2h.3第六章 平面直角坐标系一、知识点6.1 平面直角

10、坐标系6.1.1 有序数对有顺序的两个数 a 与 b 组成的数对,叫做有序数对。6.1.2 平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为 x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为 y 轴或纵轴,取向上方向为正方向; 两坐标轴的交点为平面直角坐标系的原点。平面上的任意一点都可以用一个有序数对来表示。建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了、四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。6.2 坐标方法的简单应用6.2.1 用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的

11、过程如下:建立坐标系,选择一个适当的参照点为原点,确定 x 轴、y 轴的正方向;根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2 用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移 a 个单位长度,可以得到对应点(xa,y(或(xa,y);将点(x,y)向上(或下)平移 b 个单位长度,可以得到对应点(x,yb(或(x,yb)。在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移 a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数 a

12、,相应的新图形就是把原图形向上(或向下)平移 a 个单位长度。第十章 数据的收集、整理与描述一、知识点收集、整理、描述和分析数据是数据处理的基本过程。全面调查:考察全体对象的调查方式叫做全面调查。抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。总体:要考察的全体对象称为总体。个体:组成总体的每一个考察对象称为个体。样本:被抽取的所有个体组成一个样本。样本容量:样本中个体的数目称为样本容量。频数:一般地,我们称落在不同小组中的数据个数为该组的频数。频率:频数与数据总数的比为频率。组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差

13、叫做组距。4.1 喜爱哪种动物的同学最多全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据。考察全体对象的调查属于全面调查。4.2 调查中小学生的视力情况抽样调查举例抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。4.3 课题学习调查活动主要包括以下五项步骤: 一、 设计

14、调查问卷设计调查问卷的步骤确定调查目的;选择调查对象;设计调查问题设计调查问卷时要注意:提问不能涉及提问者的个人观点;不要提问人们不愿意回答的问题;提供的选择答案要尽可能全面;问题应简明;问卷应简短。二、实施调查将调查问卷复制足够的份数,发给被调查对象。实施调查时要注意:向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;告诉被调查者你收集数据的目的。三、处理数据根据收回的调查问卷,整理、描述和分析收集到的数据。四、交流根据调查结果,讨论你们小组有哪些发现和建议? 五、写一份简单的调查报告整式的乘除1. 同底数幂的乘法:aman=am+n ,底数不变,指数相加.2. 幂的乘方与积的乘

15、方:(am)n=amn ,底数不变,指数相乘;(ab)n=anbn ,积的乘方等于各因式乘方的积.3. 单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4. 单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5. 多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6. 乘法公式:(1) 平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2) 完全平方公式: (a+b)2=a2+2ab+

16、b2, 两个数和的平方,等于它们的平方和,加上它们的积的 2 倍; (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的 2 倍; (a+b-c)2=a2+b2+c2+2ab-2ac-2bc.7. 配方: p 2(1)若二次三项式 x2+px+q 是完全平方式,则有关系式: = q ; 2 (2)二次三项式 ax2+bx+c 经过配方,总可以变为 a(x-h)2+k 的形式,利用 a(x-h)2+k可以判断 ax2+bx+c 值的符号; 当 x=h 时,可求出 ax2+bx+c 的最大(或最小)值 k. (3)注意: x 2 + 1= x + 1 2x 2 -

17、 2 .x 8. 同底数幂的除法:aman=am-n ,底数不变,指数相减.9. 零指数与负指数公式:(1)a0=1 (a0);a-n= 1a n,(a0).注意:00,0-2 无意义;(2)有了负指数,可用科学记数法记录小于 1 的数,例如:0.0000201=2.0110-5 .10. 单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11. 多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.12. 多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13. 整式混合运算:先乘方,后乘除,最后加减,有括

18、号先算括号内.14. 同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 合并同类项法则:系数相加,字母与字母的指数不变.15. 去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-” 号,括号里的各项都要变号.16. 多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.17. 移项:改变符号后,把方程的项从一边移到另一边叫移项.18. 单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,

19、但除式中不含字母的一类代数式叫单项式.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数; 系数不为零时,单项式中所有字母指数的和,叫单项式的次数.19. 多项式:几个单项式的和叫多项式.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项; 多项式里,次数最高项的次数叫多项式的次数.20. 整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.21. 有理数乘方的法则:(1) 正数的任何次幂都是正数;(2) 负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an或 (a-b)n=(b-a)n .“”“”at the end, xiao bian gives you a passage. minand once sai

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论