版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3D射影几何和变换,Page 2,点与直线,直线的齐次表示:ax+by+c=0 (a,b,c)看做矢量,(ka,kb,kc)也是矢量; 上述两个矢量是等价的,因为只差一个全局缩放因子,却都表示相同的直线; 这种等价关系下的等价类叫做齐次矢量; 在IR中的矢量等价类的集合组成射影空间IP,(0,0,0,Page 3,点的齐次表示,表示:点,x=(x,y);直线I=(a,b,c); ax+by+c=0; 方法:把“1”作为增加在点中的最后一个坐 标使IR变成一个齐次矢量; 充要条件:(x,y,1)与(a,b,c)的内积是 ax+by+c=0; 通式:点的齐次表示为x=(x1,x2,x3) x=(x
2、1/x3,x2/x3,Page 4,理想点与无穷远线,两条平行线L1:ax+by+c=0 L2:ax+by+c=0 可以求得两条直线的交点为(bc-bc,0,0) 这是点的齐次表示,当我们用非其次点来表示时会出现bc-bc/0的问题,这就是说两条线的交点在无穷远处,Page 5,理想点与无穷远点,IR是包含了那些在坐标齐次表示下x3!=0的点,当我们把x3=0的点与IR集合起来,形成IP,我们称IP为射影空间。 X3=0的点叫理想点,或无穷远点,无穷远点的集合是一条直线,即无穷远线。 I=(0,0,1)表示无穷远线 任意直线与无穷远线的交点都是(b,-a,0),所以无穷远线可以看作是平面上所有
3、直线方向的集合,Page 6,点和射影变换 2D射影几何中点的非齐次表示(X,Y),齐次表示(X,Y,1).ax+by+c=0,矢量(a,b,c). 3D射影几何中点X用齐次表示时需要一个4维矢量,齐次矢量X=(x1,x2,x3,x4),对应非齐次坐标(X,Y,Z),当X=x1/x4, Y=x2/x4, Z=x3/x4。在x4=0时,齐次点X表示无穷远点,Page 7,平面、直线和二次曲面的表示和变换 直线公式:ax+by+c=0,矢量(a,b,c). 平面公式:1X+2Y+3Z+4=0,矢量(1,2,3,4). 齐次化, X=x1/x4, Y=x2/x4, Z=x3/x4. 得到1x1+2x
4、2+3x3+4x4=0 或简记为X=0.表示点X在上,Page 8,联合与关联关系 (1)平面可由一般位置的三个点或一条直线与一个点的联合来唯一确定 (2)两张不同的平面交于唯一的直线 (3)三张不同的平面相较于一点,Page 9,三点确定一张平面 (1)设三点Xi在平面上,那么每点满足X=0 x1 1 x2 =0 2 x=0 x3 3 因为一般位置,所以它们线性无关 (2)矩阵M=X,X1,X2,X3,它由一般位置的点X和确定平面的三点Xi组成.当X在上时,IMI=0 因为三点确定一个平面,再多一点,肯定可以用X1,X2,X3线性表示,所以不是满秩的。 IMI=X1D234-X2D134+X
5、3D124-X4D123 =(D234,D134,D124,D123)是(1)的解矢量,零空间,Page 10,射影变换 在点变换X=HX下,平面变换为=H 平面上的点的参数表示 在平面上的点X可以写成X=Mx 其中M是4*3矩阵,设平面=(a,b,c,d) 且a非零,那么M可以写成M=PII3*3,其中p=(-b/a,-c/a,-d/a,Page 11,直线的表示 两点的连线或两平面的相交定义一条直线,每个交点由两个参数确定,两个交点有四个参数,故有四个自由度.问题,4个自由度得5个变量表示。 (1)零空间与生成子空间表示,Page 12,2)Plucker矩阵 将一条直线由4*4的反对称齐
6、次矩阵表示,连接两点A,B的直线L的矢量表示:L=AB-BA L有若干如下性质: 1、L的秩为2 2、该表示具有描述一条直线所需要的4个自由度,6-2 3、矩阵L与用来确定它的点A,B无关,C=A+aB代替时,那么得到的矩阵是 L=AC-CA=A(A+aB)-(A+aB)A= AB-BA=L,Page 13,设A,B分别是原点和X-方向的理想点 L=(0,0,0,1)(1,0,0,0)-(1,0,0,0)(0,0,0,1) =4行4列的矩阵反对称矩阵,左下角1 由两平面P,Q的交线确定的直线的对偶Plucker表示为L*=PQ-QP并与L有相似的性质。在点变换下,L*=HL*H,矩阵L*可由L
7、通过简单的重写规则得到: l12:l13:l14:l23:l42:l34=l*34:l*42:l*23:l*14:l*13:l*12 对偶的原则是1234的集合,Page 14,Plucker直线坐标 (1)是Plucker反对乘矩阵的六个非零元素的集合,即l=l12,l13,l14,l23,l42,l34 l的行列式值为0,故有l12*l34+l13*l42+l14*l23=0 (2)假定两条直线l1和l2分别由连接A,B和连接A1,B1所产生的,这些直线相交的充要条件是四点共面,所以行列式值为零,即IA,B,A1,B1I=0,Page 15,二次曲面与对偶二次曲面 XQX=0,X是点,Q是
8、4*4的对称矩阵。 二次曲面的分类 二次曲面的矩阵Q是对称的,它可以分解为 Q=UDU,U是正交矩阵,D是实对角矩阵,通过 对U的缩放,可以得到Q=HDH,则D等价于矩阵 H进行了射影变换。令对角矩阵符号差(D),定义 为D中+1与-1个数的差值。如表,Page 16,秩 对角线 方程 实现 4 4 (1,1,1,1) X+Y+Z+1=0 无实点 2 (1,1,1,-1) X+Y+Z=1 球面 0 (1,1,-1,-1) X+Y=Z+1 单叶双曲面 3 3 (1,1,1,0) X+Y+Z=0 点(0,0,0,1) 1 (1,1,-1,0) X+Y=Z 过原点的圆锥 2 2 (1,1,0,0)
9、X+Y=0 单条直线(Z轴) 0 (1,-1,0,0) X=Y 两平面X=+-Y 1 1 (1,0,0,0) X=0 平面X=0 三次绕线,Page 17,变换的层次 群 矩阵 失真 变换性质 射影 h11 h12 h13 仿射变换的推广 h21 h22 h23 h31 h32 h33 仿射 a11 a12 tx 平移+旋转 a21 a22 ty 非均匀缩放 0 0 1 相似 sr11 sr12 tx 平移+旋转 sr21 sr22 ty 均匀缩放 0 0 1 欧式 r11 r12 tx 平移+旋转 r21 r22 ty 0 0 1,Page 18,变换的层次 群 矩阵 失真 不变性质 射影
10、A t 接触表面 15dof v v 的相交和相切 仿射 A t 平面的平行 12dof 0 1 体积比,形心 相似 sR t 绝对二次曲线 7dof 0 1 欧式 R t 体积 6dof 0 1 A是3*3的可逆矩阵,R是3D旋转,t是平移,Page 19,移动分解 结论2.6 任何具体的平移加旋转运动都等价于绕一根转动轴的旋转加沿该转动轴的平移,0,0,x,y,y,x,s,Page 20,3D欧式运动与转动分解,转动轴,a,o,o,s,t,o,o,s,s,转动轴,o垂直,t平行,Page 21,无穷远平面 (1)在平面射影几何中,辨认无穷远线就能测量平面的仿射性质,辨认其虚原点就能测量其度量性质: 两张平面相平行的充要条件是他们的交线在上 如果一条直线与另一条直线或一张平面相交在上,则他们平行 (2)在射影变换H下,无穷远平面是不动平面的充要条件是H是一个仿射变换(类似于P20无穷远线的推导) 在放射变换下平面是整个集合不动,而不是点点不动 在某个具体的放射变换中,可能还存在除外的某些平面保持不动,但仅有在任何仿射变换下保持不变,Page 22,绝对二次曲线 (1)绝对二次曲线是在上的一条二次曲线,满足 X1+X
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年太阳能光伏发电项目承包合同含设备供应与电站运维4篇
- 2025年度金融投资合作出资方合同模板3篇
- 智能家居中的嵌入式网络通信技术
- 2025年度太阳能光伏板维修保养及发电系统维护合同3篇
- 家庭式卧床病人个性化运动方案制定
- 2025版创新型校车租赁及智能监控系统合同3篇
- 个人之间房地产买卖合同(2024版)3篇
- 二零二五年度食品代理销售授权合同范本2篇
- 2025年度能源监测设备采购与数据分析合同3篇
- 2025年度数字化文档储藏室租赁与保密服务合同4篇
- 2024年供应链安全培训:深入剖析与应用
- 飞鼠养殖技术指导
- 坏死性筋膜炎
- 整式的加减单元测试题6套
- 股权架构完整
- 山东省泰安市2022年初中学业水平考试生物试题
- 注塑部质量控制标准全套
- 银行网点服务礼仪标准培训课件
- 二年级下册数学教案 -《数一数(二)》 北师大版
- 晶体三极管资料
- 石群邱关源电路(第1至7单元)白底课件
评论
0/150
提交评论