版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.,1,响应面设计与实验数据处理,.,2,响应面优化法,响应面优化法(相应曲面法; Response Surface Methodology,RSM ),是20世纪90年代初西方所兴起的一种实验统计方法。响应曲面等值线的分析寻求最优工艺参数,将复杂的未知的函数关系,在小区域内用简单的一次或二次多项式模型来拟合因素与响应值之间函数关系的一种统计方法。适宜于解决非线性数据处理的相关问题。 囊括了试验设计、建模、检验模型适合性、寻求最佳组合条件等众多实验和统计技术;通过对过程的回归拟合和响应曲面与等高线的绘制、可方便地求出响应于各因素水平的响应值。在各因素水平的响应值的基础上,找出预测的响应最优值以
2、及相应的实验条件。 前提:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法是不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。,.,3,响应面即回归的正交试验设计,考虑了实验随机误差;可以在因素的试验范围内选择适当的试验点,用较少的试验建立一个精度高,统计性质好的回归方程,并能解决试验优化问题。 所获得的预测模型是连续的,与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的试验点进行分析。 正交试验设计所得到的优方案只能限制在已定的水平上,而不是一定试验范围内的最优方案;
3、回归分析可以对结果进行预测和优化,但只能被动的处理和分析。两者的优势结合起来,有合理的试验设计和较少的试验次数,建立有效的数学模型。 许多试验设计与优化方法,特别是在做回归分析过程中,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域。 响应面分析是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件。,.,4,响应面设计模型种类,中心组合设计(Central Composite,包括通用旋转组合设计、二次组合设计等) BOX设计
4、(Box-Behnken设计) 二次饱和和D-最优设计(D-optimal设计) 均匀设计 田口设计 . 可以进行响应面分析的实验设计有多种,比如Plackett-Burman(PB)、Central Composite Design(CCD)、Box-Behnken Design(BBD)。最常见的是CCD与BBD。 主要以BBD为例说明Design-Expert的使用 注:选用的模型不同,设计方案也不同,所需做实验的次数也就不同的,.,5,二因素响应面分析,在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用。因此假设二因素响应(曲)面的数学模型为二次多项式模型。 通过次测量试验(试
5、验次数应大于参数个数,一般认为至少应是它的倍),以最小二乘法估计模型各参数,从而建立模型; 求出模型后,以两因素水平为坐标和坐标,以相应的响应为坐标作出三维空间的曲面(这就是因素响应曲面)。 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求。因此,求出系数的最小二乘估计后,应进行检验。 一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于或观察其相关图是否所有的点都基本接近直线进行判别。 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求。因此,求出系数的最小二乘估
6、计后,应进行检验。 一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于或观察其相关图是否所有的点都基本接近直线进行判别。,.,6,.,7,响应面分析过程,要构造响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过试验获取大量的测量数据,并建立一个合适的数学模型(建模),然后再用此数学模型作图。 建模最常用和最有效的方法之一就是多元线性回归方法。对于非线性体系可作适当处理化为线性形式。 设有个因素影响指标取值,通过试验测量,得到组试验数据。假设指标与因素之间的关系可用线性模型表示,则可将各系数写成矩阵式。 应用最小二乘法即可求出模型参数矩阵,将矩阵代入原假设的回归方程,就
7、可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图。 模型中如果只有一个因素(自变量),响应(曲)面是二维空间中的一条曲线;当有两个因素时,响应面是三维空间中的曲面。,.,8,.,9,响应面分析实例,在多因素数量处理试验的分析中,可以分析试验指标(依变量)与多个试验因素(自变量)间的回归关系,这种回归可能是曲线或曲面的关系,因而称为响应面分析。 例如农作物产量与N、P、K的施肥量有关,可以通过回归分析建立产量与施肥要素间的回归关系,从而求得最佳施肥配方。,.,10,例1、有一个大麦氮磷肥配比试验,施氮肥量为每亩尿素0,3,6,9,12,15,18kg 7个水平,施磷肥量
8、为每亩过磷酸钙0,7,14,21,28,35,42kg 7个水平,共49个处理组合,试验结果见表1,试作产量对于氮、磷施肥量的响应面分析。,.,11,对于表1的数据可以采用二元二次多项式拟合,那么产量可表示为:yij=b0+b1Ni+b2Pj+b3NiPj+b4Ni2+b5Pj2+ ij 其中Ni、Pj、ij 分别表示N、P施用量和误差,按此模型的方差分析见表2。 从表2结果看,b2和b3这两个偏回归系数不显著,应该将模型缩减,逐步去掉不显著的回归系数,结果见表3。得到的模型为:yij=b0+b1Ni+b2Pj+b4Ni2+b5Pj2+ ij,.,12,该模型的回归变异占总变异的98%,因此可
9、以较好地说明施用N、P对产量的影响。 二元二次多项式回归系数及其显著性检验见表4,使用该模型分析的结果为表3,从表3中可以看出b1、b4、b5达到极显著水平,b2接近达到显著性,只有b3达不到显著水平。,.,13,图1 大麦产量对于氮、磷肥的响应面图,.,14,.,15,用于响应面设计和分析的软件,仅可以处理实验数据,不可以进行方案设计,.,16,Design-Expert,Design-Expert 是全球顶尖级的实验设计软件,最容易使用、功能最完整、界面最具亲和力的软件。在已经发表的有关响应曲面(RSM)优化试验的论文中, Design-Expert是最广泛使用的软件。 PlackettB
10、urman(PB)、Central Composite Design (CCD)、Box-Behnken Design(BBD)是最常用的实验设计方法。 以BBD为例说明Design-Expert的使用,CCD,PB与此类似。,.,17,打开design expert软件,进入主界面,然后点击file,点击new design选项卡创建一个新的试验设计工程文件。,.,18,RSM,找到理想过程,达到最佳性能,点击Response Surface选项卡,进入响应面试验设计。,因子设计,屏蔽无关因素,指出重要因素,配方设计,找到最佳配方,组合设计,结合过程变量,混合各组成和分类的因素,.,19,1
11、.1 Response Surface Methods(RSM) 响应曲面 Central Composite:中心组合设计 Box-Behnken:Box-Behnken 设计 One Factor 单因子设计 Miscellaneous 混杂设计 Optimal 最优设计 User-Definded用户自定义 Historical Data 历史数据 1.2 Factorial Designs 2-Level Factorial 2水平因子设计 Irregular Fraction 不规则因子设计 General factorial 普通因子设计 Optimal 最优设计 Plackett
12、-burman Plackett-burman设计 Min-Run Res V Min-Run Res IV Taguchi OA 田口自动设计法 1.3 Mixture Design Simplex Lattice 单纯形格子设计 Simplex Centroid 单纯型重心设计 Screening 筛选设计 Optimal 最优设计 User-Defined 用户自定义 Historical Data 历史数据 1.4 Combined Designs Optimal 最优设计 User-Defined 用户自定义,.,20,.,21,Box Behnken(Design-Expert8.
13、05b),打开Design-Expert软件新建Design选择响应面设计选用模型(Box Behnken)选择因素个数,输入因素水平所对应的原始数据选择响应值并输入试验数据 结果分析:得出二次回归方程及图形,例题:某产品的得率与反应温度x1( 70100 ),反应时间x2( 14h )及某反应物含量x3(3060%)有关,不考虑因素间的交互作用,选用正交表L8( 27 )进行一次回归正交试验,并多安排3次零水平试验,试验结果依次为(%):12.6,9.8,11.1,8.9,11.1,9.2,10.3,7.6,10.0,10.5,10.3。 (1)用一次回归正交试验设计求出回归方程; (2)对
14、回归方程和回归系数进行显著性检验; (3)确定因素主次和最优方案。,.,22,考察因素名称,选择要考察的因素数量,实验中的绝对因素(默认值为0),因素单位,因素最高值,因素最低值,主要用于以下两种情况: 1、实验需要分两天完成,两天中其他不可控因素的变化会影响实验,就可以设置两个Block; 2、实验分为两部分完成,一部分在甲实验室完成,另一部分在乙实验室完成。,默认值,中点实验每个BLOCK重复次数,默认值,本次试验分几个区块进行,该处为响应面设计的几种方法,各种方法有自己的特点,适用于不同数据的处理(比如:PB设计主要是筛选显著变量)。最常用的就是BOX-BEHNKEN设计法。,设置完后,
15、点击Continue,.,23,BLOCK的含义,例如:实验需要分两天完成,那么两天中因为其他不可控制因素的变化可能会对试验造成影响,那么就可以设置2个BLOCK,软件会在两个BLOCK中设置对应的几个中点试验重复,检查中点试验的重复性是否良好,以观察这些不可控制因素对试验造成多大影响,从而最大限度的降低试验中不可控制因素对试验的干扰。再例如,本实验其中一部分在甲实验室完成,另一部分要在乙实验室完成,那么就可以设置2个BLOCK,原因同上。,.,24,因变量个数,即本试验中改变自变量会有几个因变量发生变化,一般试验指标都是一个,因此常常为1。 例如,检测温度,pH,时间对某处理工艺对样品中含糖
16、量的变化,那么含糖量即为唯一的指标,即因变量数量为1,该处选1。如果检测温度,pH,时间对某处理工艺同时对样品中含糖量和蛋白质含量的影响,即因变量数量为2,该处选2,并在下方因变量设置中设置好对应的名称和单位。,选择响应值(因变量)数量,因变量单位,因变量名称,设置完后,点击Continue,.,25,编码值与实际值转换,两种排序方式,可任选,试验中设置的因素的水平,试验中因变量数量,各因素均为实际值的实验设计 ,也可以用编码值的实验设计,把每个试验对应的试验结果填入本栏内,准备做数据分析,.,26,各因素的实际值变为编码值,比如,因素1的高点设置为0.5,编码值即为+1,低点设置为0,编码值
17、即为-1,中点为0.25,编码值即为0,.,27,各因素转变为编码值后的页面,.,28,按照实验设计进行实验,记录每组因素组合的实验结果,填在Response列中。,完成每组实验,将实验结果填入对应的响应值框内。,.,29,点击Analysis下的COD(%)(分析的因变量名称)开始进行数据分析,.,30,2、点击Fit Summary选项卡,1、点击Transform选项卡,取默认值,.,31,Fit Summary选项卡,是将数据模拟、建模、比对,最终选择试验最佳数学模型。,.,32,多种模型方差分析 Sequential model sum of squares for central
18、composite design,.,33,R2综合分析 Model summary statistics for central composite design,.,34,拟合公式的处理方法,一般取默认即可 点击该处可以让一些变量在图中不显示,Model选项卡取默认值,再点击ANOVA选项卡,.,35,模型要求显著,失拟项要求不显著,这两个参数是衡量有益于响应面分析的指标,例如本试验中,拟合的方程显著性不好,显示为不显著,方差分析( ANOVA )选项卡,方差显著性检验、系数显著性检验、回归方程。 再点击Diagnostics选项卡,.,36,编码自变量A、B、C的二次多项回归方程,真实自
19、变量停留时间 HRT 、pH 值、Fe/C 比的二次多项回归方程 拟合方程中的系数值,.,37,二次方程模型置信度分析 Quadratic model analysis of confidence degree,.,38,残差的正态概率分布图,越靠近直线越好,.,39,Residuals vs Predicted图(残差与方程预测值的对应关系图) 分布越分散、越无规律越好,.,40,Predicted vs Actual图(预测值与试验实际值的对应关系图) 点越靠近同一条直线越好,.,41,点击Influence选项卡,再点击Report选项卡,进入数据报告界面,.,42,点击Model Graphs选项卡 进入响应面图形显示界面,方程预测值,实际实验值,.,43,等高线图 考察每两个因素对因变量造成的影响,并由拟合的方程形成等高线,为二维平面图形,可经由该图找出较好范围。,.,44,点击View的3D Surface看响应面3D图,点击Term选择不同因素间的等高线图,选中文字,点击右键,修改坐标名称,.,45,移动红线调整不同的因素大小,点击Term选择不同因素间的响应面曲线,三维响应面曲线,可更直观的看出两因素对因变量的影响情况,可以很直观的找出最优范围,刚才所见二维等高线图为三维响应面图在底面的投影图,投影图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年火灾事故财产损失赔偿代理合同
- 2025年度智能家居系统与智能家居产品销售合同范本
- 2025版施工单位水泥砖采购及施工图设计服务合同3篇
- 2025年度个人货车租赁合同与环保标准融合范本3篇
- 感恩同行青春追梦
- 2025年全球及中国升降式传递窗行业头部企业市场占有率及排名调研报告
- 2025-2030全球冲压飞轮行业调研及趋势分析报告
- 2025年全球及中国天窗玻璃更换和维修行业头部企业市场占有率及排名调研报告
- 2025年全球及中国量子信息系统服务行业头部企业市场占有率及排名调研报告
- 2025年度食品饮料代理销售服务合同
- 湖北省十堰市城区2024-2025学年九年级上学期期末质量检测综合物理试题(含答案)
- 2024企业答谢晚宴会务合同3篇
- 高中生物选择性必修1试题
- 电气工程及其自动化专业《毕业设计(论文)及答辩》教学大纲
- 《客舱安全管理与应急处置》课件-第14讲 应急撤离
- 七年级下册《Reading 1 A brave young man》优质课教案牛津译林版-七年级英语教案
- 中国人婚恋状况调查报告公布
- 《木兰诗》第1第2课时示范公开课教学PPT课件【统编人教版七年级语文下册】
- GB/T 11144-2007润滑液极压性能测定法梯姆肯法
- 国家开发银行
- 板带生产工艺5(热连轧带钢生产)课件
评论
0/150
提交评论