数学人教版八年级上册15.3.1分式方程的解法.3.1分式方程的解法PPT课件.ppt_第1页
数学人教版八年级上册15.3.1分式方程的解法.3.1分式方程的解法PPT课件.ppt_第2页
数学人教版八年级上册15.3.1分式方程的解法.3.1分式方程的解法PPT课件.ppt_第3页
数学人教版八年级上册15.3.1分式方程的解法.3.1分式方程的解法PPT课件.ppt_第4页
数学人教版八年级上册15.3.1分式方程的解法.3.1分式方程的解法PPT课件.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、16.3 分式方程,知识回顾:,1.观察这是个什么方程?,2.什么叫一元一次方程?,(整式方程),3.解一元一次方程的一般步骤有哪些?,解:,一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?,解:设江水的流速为 v 千米/时,则顺水速度为_ 千米/时;逆水速度为_千米/ 时; 根据题意,得,情 境 问 题,分式方程,像这样,分母中含有未知数的方程叫做分式方程。,点此播放讲课视频,下列方程中,哪些是分式方程?哪些整式方程.,整式方程,分式方程,解得:,下面我们一起研究下怎么样来解分式方程:,方程两边

2、同乘以(20+v)(20-v) ,得:,在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(化归思想)。,探究,检验:将v=5代入分式方程,左边=4=右边,所以v=5是原分式方程的解。,x+5=10,解分式方程:,解:方程两边同乘以最简公分母(x-5)(x+5),得:,解得:,x=5,检验: 将x=5代入x-5、x2-25的值都为0,相应分式无意义。所以x=5不是原分式方程的解。,原分式方程无解。,增根,增根的定义,增根:由去分母后所得的整式方程解出的,使分母为零的根.,使最简公分母值为零的根,产生的原因:,点此播放讲解视频,思考,1、上面两个分式方程中,为什么,去分母后得到

3、的整式方程的解就是它的解,而 去分母后得到的整式方程的解却不,是原分式方程的解呢?,我们来观察去分母的过程,100(20-v)=60(20+v),x+5=10,两边同乘(20+v)(20-v),当v=5时,(20+v)(20-v)0,两边同乘(x+5)(x-5),当x=5时, (x+5)(x-5)=0,分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.,分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.,2、怎样检验所得整式方程的解是否是 原分式方程的解?,将整式方程的解代入最简公分母,如果最简公分母的值不为,则整式方程的解是原分式方程

4、的解,否则这个解就不是原分式方程的解,思考,解分式方程的一般步骤,解分式方程的思路是:,分式方程,整式方程,去分母,一化 二解 三检验,归纳提升,分式方程,整式方程,a是分式 方程的解,X=a,a不是分式 方程的解,去分母,解整式方程,检验,目标,最简公分母不为,最简公分母为,例:解分式方程,点此播放解题视频,点此播放题解视频,练习:解分式方程,点此播放题解视频,点此播放解答视频,解分式方程容易犯的错误有:,(1)去分母时,原方程的整式部分漏乘,(2)约去分母后,分子是多项式时, 没有注意添括号(因分数线有括号的作用),(3)增根不舍掉。,1.当m=0时,方程 会产生增根吗?,思考:,3.当m

5、为何值时,方程 会产生增根呢?,2.当m=1时,方程 会产生增根吗?,让我们一起加油:,试一试:解分式方程,例2:k为何值时,方程 产生增根?,问:这个分式方程何时有增根?,答:这个分式方程产生增根,则增根一定是使方程中的分式的分母为零时的未知数的值,即x=2。,问:当x=2时,这个分式方程产生增根怎样利用这个条件求出k值?,答:把含字母k的分式方程转化成含k的整式方程,求出的解是含k的代数式,当这个代数式等于2时可求出k值。,例2:k为何值时,方程 产生增根?,把x=2代入以上方程得:,K=1,所以当k=1时,方程 产生增根。,例3:,k为何值时,分式方程,有增根?,方程两边都乘以(x-1)

6、(x+1),得 x(x+1)+k(x+1)-x(x-1)=0,解:,把x=1代入上式,则k=-1,把x=-1带入上式,k值不存在,当k=-1,原方程有增根。,k为何值时,方程 无解?,思考:“方程有增根”和“方程无解”一样吗?,变式1:,k为何值时,方程 有解?,变式2:,k为何值时,分式方程,无解?,例4:,方程两边都乘以(x-1)(x+1),得 x(x+1)+k(x+1)-x(x-1)=0 解,得,当x=1时,原方程无解,则k=-1,当k=-2时,k+2=0, 原方程无解,当x=-1时,k值不存在,当k=-1或k=-2时,原方程无解,解:,“增根”是你可以求出来的,但代入后方 程的分母为0无意义,原方程无解。 “无解”包括增根和这个方程没有可解的根,思考:“方程有增根”和“方程无解”一样吗?,变式2:,K取何值时,分式方程,有解?,2.当m为何值时,方程 无解?有解呢?,练习:,作业:,1.m为何值时,方程 会产生增根?,2.若关于x的方程 产生增根,k为何值?,知识拓展,3.a为何值时关于x的方程,的解是零.,4.,的根是_,5.方程,的增根是( ),根是( )。,教师指导小结,1、解分式方程的思路是:,分式方程,整式方程,去分母,2、解分式方程的一般步骤:,一化二解三检验,1、在方程的两边都乘以最简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论