数字电路全部PPT课件_第1页
数字电路全部PPT课件_第2页
数字电路全部PPT课件_第3页
数字电路全部PPT课件_第4页
数字电路全部PPT课件_第5页
已阅读5页,还剩713页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,考试时间,十一周(具体等教务通知)(100分钟),考试题型,简答题、计算题、设计题,半开卷考试,允许带矿大信纸一张,蓝色圆珠笔书写任意想要写的重点,考试结束时上交,算作平时成绩的一部分。,考试地点,具体等教务通知,书上例题、作业、实验,.,2,第一章数制与编码,要求:,会数制转换;符号数的代码表示及应用;8421BCD码、5421BCD码、余三码、格雷码;,.,3,第二章逻辑代数基础,要求:,基本概念;两种化简方法。,概念:,基本逻辑关系;逻辑函数的几种表示方法;最小项及标准式;无关项。,函数化简:,公式法和卡诺图法。,.,4,第三章逻辑门电路,要求:,概念;接口应用;特殊门及应用;波形图。,概念:,基础门;集成门功能及电气特性及相应参数;特殊门的特点及应用。,主要参数:,集成门使用接口:,VON,VOFF,VOH,VOL,RON,ROFF,IIS,IIHNo,tpd,输入、输出特性;输入负载特性;传输特性。,.,5,第四章组合逻辑电路,集成组合电路的应用:,概念;分析设计方法;集成电路应用;,概念:,组合电路特点;半加与全加、编码、译码、选择、比较;竞争与险象。,组合电路的分析与设计方法:,要求:,SSI一般分析设计方法由门实现;MSI真值表、表达式及变换为相应(逻辑部件)的形式。,注意使能端(控制端)的正确使用:,.,6,0.2数字电路,0.2.1.基本概念电信号:指随时间变化的电压和电流。模拟信号:在时间和幅值上都为连续的信号。数字信号:在时间和幅值上都为离散的信号。模拟电路:处理和传输模拟信号的电路。数字电路:处理和传输数字信号的电路。,.,7,0.2.2模拟电路模拟信号:时间上连续:任意时刻有一个相对的值。数值上连续:可以是在一定范围内的任意值。例如:电压、电流、温度、声音等。真实的世界是模拟的。缺点:很难度量;容易受噪声的干扰;难以保存。优点:用精确的值表示事物。,模拟电路:处理和传输模拟信号的电路。三极管工作在线性放大区。,.,8,0.2.3数字电路数字信号:时间上离散:只在某些时刻有定义。数值上离散:变量只能是有限集合的一个值,常用0、1二进制数表示。,.,9,数字信号取值:数字信号位数:例:,0和1不表示数值的大小,没有数值的概念,仅表示两种截然不同的逻辑状态,0和1两种。即用二进制表示。,1位二进制表示2种状态;n位二进制表示2n种状态,取2nN,灯的开关2种取值1位二进制数人的性别2种取值1位学生的籍贯32种取值5位学生的民族56种取值6位(26=6456)东西南北方位4种取值2位产品的计数N种取值n位,2nN,.,10,数字电路:处理和传输数字信号的电路。即能对数字信号进行算术运算和逻辑运算。三极管工作在开关状态,即饱和区或截止区。,算术运算对两个(及以上)数字信号进行加、减、乘、除的算术加工。,逻辑运算对数字信号进行与、或、非及其它逻辑关系的加工处理。,单元电路:逻辑设计:,把单元电路和逻辑部件组成系统,根据确定的功能要求,设计出相应的数字电路。,门电路、触发器由单元电路构成逻辑部件,.,11,0.2.4.数字电路特点(与模拟电路相比),(1)数字电路的基本工作信号是用1和0表示的二进制的数字信号,反映在电路上就是高电平和低电平。(2)晶体管处于开关工作状态,抗干扰能力强、精度高。(3)通用性强。结构简单、容易制造,便于集成及系列化生产。(4)具有“逻辑思维”能力。数字电路能对输入的数字信号进行各种算术运算和逻辑运算、逻辑判断,故又称为数字逻辑电路。,.,12,0.2.5.数字电路的分类(1)按功能分类组合逻辑电路:电路的输出信号只与当时的输入信号有关,而与电路原来的状态无关。例:表决器时序逻辑电路:电路的输出信号不仅与当时的输入信号有关,而且还与电路原来的状态有关。例:计数器,(2)按结构分类TTL双极型(BJT)CMOS单极型(FET),.,13,(3)按集成电路规模分类集成度:每块集成电路芯片中包含的元器件数目小规模集成电路(SmallScaleIC,SSI)10个门10100个元件中规模集成电路(MediumScaleIC,MSI)10100个门1001000个元件大规模集成电路(LargeScaleIC,LSI)1001000个门100010000个元件超大规模集成电路(VeryLargeScaleIC,VLSI)1000个门10000个元件特大规模集成电路(UltraLargeScaleIC,ULSI)巨大规模集成电路(GiganticScaleIC,GSI),.,14,越来越大的设计越来越短的推向市场的时间(例如家电)越来越低的价格(例如家电)大量使用计算机辅助设计工具(EDA技术)多层次的设计表述大量使用复用技术IP(IntellectualProperty),0.2.6.当前数字电路设计的趋势,.,15,从20世纪60年代以来数字集成电路经历了SSI、MSI到LSI、VLSI的发展过程,70年代初1K位存储器标志LSI问世后,微电子技术得到迅猛发展。标志性的芯片主要有三类:一类是CPU的发展.自从晶体管级的CPU问世以来,其集成度几乎1-2年翻一倍,性能提高一个数量级,例如:1971-1972年出现的Intel4004和4040(4位),其集成度为2000晶体管,1976年生产的8085(8位),集成度为9000晶体管/片;而1980年生产的Iapx43201(32位),集成度为100000晶体管/片,目前奔腾芯片的集成度都达到几百万甚至上千万个晶体管。工业用品的单片机也得到迅猛的发展,随着超大规模集成电路的发展,单片机已从4位、8位字长,发展到16位、32位字长。另一类具有代表性的是专用ASIC的发展.由于EDA技术的发展,改变了传统的设计方式加之制造工艺水平的不断提高,ASIC以其适应面广,体积小,功耗低,而且具有高性能、高可靠性和高保密性等优点得到广大芯片设计者的青睐。,集成电路的发展,.,16,第三类典型的芯片是可编程器件.包括数字可编程器件和模拟可编程器件。从20世纪70年代出现熔丝编程的PROM和PLA,数字可编程器件获得飞速发展,20世纪70年代末AMD公司在PLA的基础上推出PAL,80年代初期Lattice公司发明电可擦写的GAL器件。80年代中期Xilinx公司提出现场可编程的概念,于1985生产了世界上第一片FPGA器件。同期Altera公司推出了EPLD器件(ErasableProgrammableLogicDevice)。80年代末期Lattice公司提出了在系统可编程技术以后,相继推出一系列具备在系统可编程能力的复杂可编程逻辑器件(CPLD-ComplexPLD)。CPLD是在EPLD基础上发展起来的,它采用E2CMOS工艺制作,增加了内部连线,改进了内部结构体系,因而比EPLD的性能更好,设计也更加灵活。,集成电路的发展,.,17,专用集成电路(ASIC-ApplicationSpecificIntegratedCircuit)是为满足某一应用领域或特定用户需要而设计、制造的LSI或VLSI电路,可以将特定的电路或一个应用系统设计在一个芯片上,构成单片应用系统(SOC)。ASIC可分为模拟ASIC和数字ASIC,数字ASIC又可以分为全定制和半定制两种。全定制ASIC芯片的各层(掩膜)都是按特定电路功能专门制造的。设计人员从晶体管级的版图尺寸、位置和互连线开始设计,以达到芯片面积利用率高、速度快、功耗低的最优性能。但全定制的ASIC制作费用高,周期长,适用于批量较大的产品。半定制是一种约束性设计方式。约束的目的是简化设计、缩短设计周期以及提高芯片的成品率。半定制的ASIC主要有门阵列、标准单元和可编程逻辑器件三种。门阵列:包括门电路、触发器等并留有布线区供设计人员连线,用户根据需要设计电路,确定连线方式,交生产厂家布线。标准单元:设计人员使用厂家提供的标准单元,利用CAD(或EDA)工具完成版图级的设计。与门阵列比较其设计灵活,功能强,但设计周期长,费用高。可编程逻辑器件:设计人员用厂家提供的通用型半定制器件(PLD),借助特定的EDA软件进行设计,经过综合适配后形成特定的二进制文件(bitstreamfile),然后通过烧写器将文件写入芯片中,或通过ISP(InSystemProgram)的方式下载到芯片中即可。用户通过可配置的逻辑器件进行电路设计,其特点成本低、设计周期短、可靠性高、承担的风险小。,集成电路的发展,.,18,0.3本课程讲授内容,绪论第一章第二章第三章第四章第五章第六章第七章第八章第十章,数制与编码:“数”在计算机中怎样表示。,逻辑代数基础:逻辑代数的基本概念、逻辑函数及其标准形式、逻辑函数的化简。,组合逻辑电路的分析与设计。,触发器及其应用。,时序逻辑电路的分析与设计。,脉冲电路。,半导体存储器RAM。,模/数(A/D)与数/模(D/A)转换。,逻辑门电路。,.,19,0.4数字电路的学习方法,(1)重视基础,突出应用;(2)重视外特性,少顾内部结构;(3)加强实践能力锻炼。具体如下:(1)逻辑代数是分析和设计数字电路的重要工具,应熟练掌握。(2)重点掌握各种常用数字逻辑电路的逻辑功能、外部特性及典型应用。对其内部电路结构和工作原理不必过于深究。(3)掌握基本的分析方法。(4)本课程实践性很强。应重视习题、基础实验和综合实训等实践性环节。(5)注意培养和提高查阅有关技术资料和数字集成电路产品手册的能力。要求:掌握基本原理及分析、设计方法,.,20,0.6成绩评定,理论80%包括:平时30%和考试:70%,0.7参考书,数字电路逻辑设计第三版王毓银高教出版社数字电子技术第四版阎石高教出版社数字设计引论沈嗣昌高教出版社电子系统设计何小艇等浙江大学出版社数字电路与系统设计邓元庆西安电子科大出版社数字电路龚之春电子科技大学出版社(成都)习题集、专科教材、相关杂志,实验20%包括:操作60%和报告:40%,.,21,第一章学习要求:,熟练掌握各进位计数制间的相互转换。熟练掌握一个数原码、反码、补码的表示,以及原码、反码、补码的算术运算。掌握8421BCD码、余3码、格雷码、奇偶校验码的特点。,.,22,第一章数制与编码,1进位计数制,2数制转换,3带符号数的代码表示,4常用的一般编码,.,23,1进位计数制,一、十进制数的表示数码个数:10个。计数规律:,数制:进位计数制:,0,1,2,3,4,5,6,7,8,9,逢十进1,借一当10,数码的个数和计数规律是进位计数制的两个决定因素,计数体制、计数方法。,高位进位,本位归0。,.,24,例:123.45=1102+2101+3100+410-1+510-2,例:123.45读作一百二十三点四五,计数法,例:123.45读作一百二十三点四五,例:123.45=1102+2101+3100+410-1+510-2,(N)10=an-110n-1+an-210n-2+a1101+a0100+a-110-1+a-210-2+a-m10-m,.,25,基与基数,用来表示数的数码的集合称为基(09),集合的大小称为基数(十进制为10)。即表示某种进位计数制所具有的数字符号的个数称为基数,也叫模。,在十进制中,10的整幂次方称为10进制数的权。即表示某种进位计数制不同位置上数字的单位值,位置不同表示的数值大小不同。,权,例:,.,26,二、其它进制其它进制的计数规律可看成是十进制计数制的推广,对任意进制R,数N可以表示成按权展开式:,(N)R=an-1Rn-1+an-2Rn-2+a1R1+a0R0+a-1R-1+a-2R-2+a-mR-m,(N)R=(an-1an-2a1a0.a-1a-2a-m)R,.,27,权值一般用十进制表示,R2二进制,数码个数2个:计数规律:例:,0,1,逢二进1,借一当2,(11011.01)2=124+123+022+121+120+02-1+12-21(10)100+1(10)11+0(10)10+1(10)1+1(10)0+0(10)-1+1(10)-10,权值一般用十进制表示,.,28,二进制数的特点:,只有两个数码,很容易用物理器件来实现。,运算规则简单。,可使用逻辑代数这一数学工具。,节省设备,例:如需表示数字0999,共有1000个信息量。十进制:用3位,每位10个数字,共需30个数字设备。二进制:用10位,每位2个数字,共需20个数字设备。,.,29,R8八进制,数码个数8个:计数规律:例:,0,1,2,3,4,5,6,7,逢八进1,借一当8,(176.5)8=182+781+680+58-11(10)2+7(10)1+6(10)0+5(10)-1,.,30,R16十六进制,数码个数16个:计数规律:例:其它进制,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F(01015),逢十六进1,借一当16,(FA1.C)16=F162+A161+1160+C16-1F(10)2+A(10)1+1(10)0+C(10)-1,如六进制、十二进制、二十四进制、六十进制等。书P5表1.1.1所列各进制对应值要求熟记。,.,31,几种常用数制的表示方法(P5),.,32,2数制转换,说明:转换是任意的。方法:多项式替代法基数乘除法混合法直接转换法,10,10,10,K,K,.,33,一、多项式替代法(R10),(11011.11)2=()10,=124+123+022+121+120+12-1+12-2,1680210.50.25,=(27.75)10,(321.4)8=()10,=382+281+180+48-1,1921610.5,=(209.5)10,例1:,例2:,规则:按权展开,相加求和,.,34,二、基数乘除法(10R),整数的转换基数除法规则:除基取余,商零为止例1:解:,(25)10=()2,(25)10=(11001)2,.,35,二、基数乘除法(10R),整数的转换基数除法规则:除基取余,商零为止例2:解:,(54)10=()16,(54)10=(36)16,.,36,小数的转换基数乘法,规则:乘基取整,满足精度要求为止。例3:,(0.125)10=()2,0.25,(0.125)10=(0.001)2,.,37,小数的转换基数乘法,规则:乘基取整,满足精度要求为止。例4:,(0.125)10=()4,0.5,(0.125)10=(0.02)4,.,38,小数的转换基数乘法,例5:,(29.93)10=()2,1.86,(29.93)10=(11101.11101)2,.,39,小数的精度,若求出的是有限位小数,表明已求出准确的转换小数;若求出的是无限位小数,表明转换出的小数存在误差。取数原则:等精度转换;按题意要求,等精度转换,.,40,等精度转换(续),转换后应使:1-j1-i即ij,故,取满足不等式的最小整数,例:(0.3021)10()16,已知精度为(0.1)410,解:10,16,i4,取j=4,.,41,按题意要求,例:(0.3021)10()2,要求精度0.1%解:,例:(0.3021)10()8,要求精度0.01%解:,取j=10,取j=5,.,42,三、混合法(10),例:(2022)3()8解:,(2022)3=233+032+231+230=(62)10=(76)8,.,43,四、直接转换法(K,K),一般在二、八、十六进制之间转换,八进制与二进制之间的转换:,(10011100101101001000.01)B=,(010011100101101001000.010)B=,=(2345510.2)O,从小数点开始3位一组,不足补0,不足补0,.,44,十六进制与二进制之间的转换:,(10011100101101001000.01)B=,(10011100101101001000.0100)B=,=(9CB48.4)H,不足补0,从小数点开始4位一组,.,45,反之:,(345.7)O=()B,(345.7)O=(011100101.111)B,1位八进制对应3位二进制,(27B.7C)H=()B,(27B.7C)H=(001001111011.01111100)B,1位十六进制对应4位二进制,=(1001111011.011111)B,.,46,3带符号数的代码表示一、符号数,真值:在数值前加“”号表示正数;在数值前加“”号表示负数。机器数:把符号数值化的表示方法称。用“0”表示正数,用“1”表示负数。例:真值机器数91001010019100111001,符号位,.,47,二、原码,常用的机器数有:原码、反码、补码其符号位规则相同,数值部分的表示形式有差异。,符号位数值位正0不变负1,例:,X11101X1原=01101X21101X2原=11101,直观易辨认;有2个0;符号不参与运算;数值范围,特点:,组成:,(2(n-1)1)(2(n-1)1),.,48,三、反码,组成:特点:,符号位数值位正0不变负1取反,例:,X11101X1反=01101X21101X2反=10010,X11101X1反=10010X1反反=11101=X1原,正数的反码同原码,负数的反码数值按位取反;有2个0;反码的反码为原码;数值范围,(2(n-1)1)(2(n-1)1),.,49,特点(续),两数和的反码等于两数反码之和;符号位参与运算,有进位时循环相加。,例:已知X11100X21010求Y1X1X2;Y2X2X1,解:X1反=01100,X1反=10011,X2反=01010,X2反=10101Y1反X1反X2反=00010Y10010,Y2反X2反X1反=11101Y20010,.,50,四、补码,组成:特点:,符号位数值位正0不变负1取反1,例:,X11101X1补=01101X21101X2补=10011,正数的补码同原码,负数的补码数值按位取反1;只有1个0;补码的补码为原码;数值范围,X11101X1补=10011X1补补=11101=X1原,2(n-1)(2(n-1)1),,.,51,补码的计算和引进补码的原因:,数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为(-127-0+0127)共256个.有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下:假设字长为8bits(1)10-(1)10=(1)10+(-1)10=(0)10(00000001)原+(10000001)原=(10000010)原=(-2)显然不正确.,.,52,因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应.下面是反码的减法运算:(1)10-(1)10=(1)10+(-1)10=(0)10(00000001)反+(11111110)反=(11111111)反=(-0)有问题.(1)10-(2)10=(1)10+(-2)10=(-1)10(00000001)反+(11111101)反=(11111110)反=(-1)正确问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.,.,53,于是就引入了补码概念.负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:(-1280127)共256个.已知某数的补码,先求某数的反码,然后在对反码+1,就得到某数的原码.比如:已知某个数的补码是:10100110先对10100110求反,得:11011001再对11011001加1,得:11011010那么这个数为-86,.,54,特点(续),两数和的补码等于两数补码之和;符号位参与运算,有进位时丢弃。,例:已知X11100X21010求Y1X1X2;Y2X2X1,解:X1补=01100,X1补=10100,X2补=01010,X2补=10110Y1补X1补X2补=00010Y10010,Y2补X2补X1补=11110Y20010,.,55,补码的补充说明:,计数容量。,在某一模数系统中,模数为N,如果a、b的余数相同,则称a、b模N同余。例:17和33在模16系统中同余1。同余的两数,在同一模数系统中值相等,即为余数。,同余:,模:,1.概念,.,56,2.补码的应用:变减为加,一般而言:在模N的系统中,数L与N-L是一对互补的数。,特例情况:如N=2n,即在二进制中,负数L补码的数值为L补2nL,求取形式上可归纳为:取反加1。,例:钟表为模12的系统。,顺时针:+;逆时针:-,由12点拨到3点:,1)12+3=15,15(mod12)=3,2)12-9=3,3(mod12)=3,则:12-9(mod12)=12+3(mod12)=3,即减9等于加3,在mod12系统中3是9的补码(仅考虑数值位),所以利用补码特点可把减法变成加法运算。,当L为负数时,,.,57,4常用的一般编码,一、二十进制编码二、可靠性编码,现实生活中,对事物进行编码的示例很多,如:学号、身份证号、电话号码、房间号、汽车牌号等等。主要以十进制数为主,也有字母和文字。在数字系统里,往往也需要对被控对象进行编码,或者对传递的信息进行编码。数字系统中的编码以二进制数形式出现,常用的编码有:,.,58,一、二十进制编码,BCD码-Binary-Coded-Decimal用四位二进制数表示一位十进制数码(09),称为BCD码。四位二进制有16种不同的组合,任意取其中的10中组合来代表数码09,即形成一种BCD码,不同的组合便形成了各种各样的BCD编码。BCD码主要有:8421码、5421码、2421码、余3码等。,.,59,二进制数,自然码,8421码,2421码,5421码,余三码,.,60,简称8421码。按4位二进制数的自然顺序,取前十个数依次表示十进制的09,后6个数不允许出现,若出现则认为是非法的或错误的。,8421码是一种有权码,每位有固定的权,从高到低依次为8,4,2,1,如8421码:(0111)8421BCD=08+14+12+11=7,8421BCD码,二进制数,8421码,.,61,与自然二进制数排列一至,10101111为冗余码;,8421码与十进制的转换关系为直接转换关系例:(00010011.01100100)8421BCD=(13.64)10,运算时按逢10进1的原则,并且要进行调整。调整原则:有进位或出现冗余码时:加+6调整。,有权码,从左到右为8421;,8421码的特点:,.,62,例:8+9=17,1000+)100110001,+)0110,0111,例:7+6=13,0111+)01101101,+)0110,10011,8421码运算举例:,.,63,2421BCD码,简称2421码。典型2421码按4位二进制数的自然顺序,取前后各5个数依次表示十进制的09,其余6个数不允许出现,若出现则认为是非法的或错误的。这只是2421码的一种编码方案。,2421码是一种有权码,每位有固定的权,从高到低依次为2,4,2,1,如:,二进制数,2421码,2421码(0100)2421=02+14+02+01=42421码(1110)2421=12+14+12+01=8,.,64,2421码的编码方案:,特点:,.,65,余3码,4)相加运算时:如果没有进位,则和数要减3,否则和数要加3。,1)是一种无权码。,2)有六个冗余码。(0000、0001、0010、1101、1110、1111),3)对9的自补码。,例:(4)余3码=0111;(5)余3码=1000(0111)9补=1000即0111按位取反。,由8421码加3形成。,.,66,例如:(0100)余3+(0110)余3=,(1000)余3+(1001)余3=,余3码运算:,丢弃,无进位减3,有进位加3,(0111)余3,(0100)余3,.,67,例2:用余3码运算:(05)10(08)10?,有进位3,解:(05)10(08)10(00111000)余3+(00111011)余3,无进位3,(01000110)余3(13)10,个位运算,十位运算,.,68,二进制数,自然码,8421码,2421码,5421码,余三码,.,69,二、可靠性编码,能减少错误,发现错误,甚至纠正错误的编码称为可靠性编码。,纠错的三个层次,编码本身不易出错格雷码,出错能检查出来奇偶校验码,检查并能纠错汉明码,纠错是以增加硬件为代价的,.,70,格雷码,在一组数的编码中,如果任意相邻的代码只有一位二进制数不同,即为格雷码。,(1101)B,例:13的格雷码:,=(1011)G,典型二进制格雷码由自然二进制码转换而得,其编码规则为:,.,71,格雷码的特点:,汉明距离1,循环特性n一定时最大数的第n位为1,其余各位为0。,具有反射特性第n位为反射位,以第n位的0、1交界处为轴上下对称。,一个n位的格雷码,可由n1位格雷码产生。方法:在n1位码前加0,再作对称镜像。,.,72,反射,循环,.,73,例:7的典型格雷码为0100,典型二进制格雷码转换成二进制数的方法:,(0100)G,=(0111)B,.,74,补充:步进码,符合格雷码中汉明距离1的特点。,.,75,步进码的形成:,例:由7的步进码:11100;产生8的步进码:11000,.,76,奇偶校验码,组成:信息位校验位(1位)奇偶校验码,由信息位和校验位(冗余部分)两部分组成。校验位的取值可使整个校验码中的1的个数按事先的规完成为奇数或偶数。,.,77,简单的奇偶校验码:,以8421BCD码为例,.,78,检错,只能检出单个错误或奇数个错,但不能纠错。,例:奇校验传送1001:解:校验位P=1,奇校验码为:10011正确传送时:,不正确传送时:设接收码为10111,出错,.,79,作业:,P231-1(1),1-2(1),1-3(1),1-4(1),1-5(1)113,116(1)(3)思考题1-9,.,80,节省设备的说明:,1)设n是数的位数R是基数Rn最大信息量nRRn个数码所需设备量例:n=3,R=10,(R)10n=103=1000nR=310=30R=2时,为使2n1000n=10(Rn=1024),nR=102=20同样为1000的信息量,二进制比十进制节省设备。2)唯一性证明N=Rn(N为最大信息量)LnN=nLnR令C=LnNC=nLnR两边同乘R,RC=nRLnR可求得:,R=e=2.718,.,81,第二章逻辑代数基础,主要内容基本逻辑运算逻辑代数的基本公式和规则逻辑函数的化简,.,82,几个基本概念,逻辑:逻辑学:逻辑代数:逻辑状态:逻辑变量:逻辑函数:逻辑电路:,指事物的规律性和因果关系。,研究思维的形式和规律的科学。,逻辑学中的数学分支。在电子领域用二值变量进行描述,称布尔代数,统称逻辑代数。,完全对立、截然相反的二种状态,如:好坏、美丑、真假、有无、高低、开关等。,代表逻辑状态的符号,取值0和1。,输出是输入条件的函数,有一定的因果关系。,电路的输入和输出具有一定的逻辑关系。,.,83,1基本逻辑运算,一、“与”运算(逻辑乘),定义:,决定一个事情发生的多个条件都具备,事情就发生,这种逻辑关系叫“与”逻辑。,打开有两把锁的自行车。,打开有两个串联开关的灯。,例1:例2:例3:,楼道里自动感应灯。,.,84,打开有两个串联开关的灯。设开关为A、B,合上为1,断开为0;灯为F,灯亮为1,灭为0,真值表,全部输入条件的所有组合与输出的关系。,真值表,例3:,由“与”运算的真值表可知“与”运算法则为:,00=010=001=011=1,有0出0全1出1,.,85,表达式,逻辑代数中“与”逻辑关系用“与”运算描述。“与”运算又称逻辑乘,其运算符为“”或“”。两变量的“与”运算可表示为:,FAB或者F=AB简写为:FAB读作:F等于A与B,.,86,二、“或”运算(逻辑加),定义:,决定一个事情发生的多个条件中,有一个或以上的条件具备,事情就发生,这种逻辑关系叫“或”逻辑。,.,87,真值表,打开有两个并联开关的灯。设开关为A、B,合上为1,断开为0;灯为F,灯亮为1,灭为0,真值表,例:,由“或”运算的真值表可知“或”运算法则为:,00=010=101=111=1,有1出1全0出0,.,88,表达式,逻辑代数中“或”逻辑关系用“或”运算描述。“或”运算又称逻辑加,其运算符为“”或“”。两变量的“或”运算可表示为:,FAB或者F=AB读作:F等于A或B,.,89,三、“非”运算(逻辑非),定义:,某一事情的发生,取决于对另一事情的否定,这种逻辑关系叫“非”逻辑。,.,90,真值表,打开上例电路中的灯。设开关为k,合上为1,断开为0;灯为F,灯亮为1,灭为0,真值表,例:,由“非”运算的真值表可知“非”运算法则为:,.,91,表达式,“非”逻辑用“非”运算描述。“非”运算又称求反运算,运算符为“”或“”,“非”运算可表示为:,读作“F等于A非”,意思是若A0,则F为1;反之,若A=1,则F为0。,.,92,2逻辑代数的基本公式和规则,一、基本公式基本运算公式,.,93,基本运算公式(续),01律,与普通代数相类似的公式,A(BC)ABAC,ABC(AB)(AC),交换律,结合律,分配律,ABBA,A(BC)(AB)C,.,94,逻辑代数的特有公式,吸收律:AABAA(A+B)A,.,95,两种常用的运算公式,变量相异为1,反之为0,变量相同为1,反之为0,.,96,?,请注意与普通代数的区别!,.,97,证明方法,证:用真值表法证明。,.,98,例2:证明,证:用真值表法证明。,证毕,.,99,证明:,推广之:,例3:证明包含律,.,100,二、逻辑代数的重要规则,反演规则,如果将逻辑函数F中所有的“”变成“+”;“+”变成“”;“0”变成“1”;“1”变成“0”;原变量变成反变量;反变量变成原变量;所得到的新函数是原函数的反函数。,.,101,使用反演规则时,应注意保持原函式中运算符号的优先顺序不变。,例2:已知,例3:已知,长非号不变,与变或时要加括号,.,102,对偶规则,如果将逻辑函数F中所有的“”变成“+”;“+”变成“”;“0”变成“1”;“1”变成“0”;则所得到的新逻辑函数是F的对偶式F。如果F是F的对偶式,则F也是F的对偶式,即F与F互为对偶式。,例:,求某一函数F的对偶式时,同样要注意保持原函数的运算顺序不变。,.,103,推理:若两个逻辑函数F和G相等,则其对偶式F和G也相等。,证毕,.,104,任何一个含有变量A的逻辑等式,如果将所有出现A的位置都代之以同一个逻辑函数F,则等式仍然成立。,代入规则,.,105,3逻辑函数的化简,一、逻辑函数的表达形式函数表达式:真值表:卡诺图:,卡诺图是一种用图形描述逻辑函数的方法。,.,106,二、函数表达式,基本表达形式按逻辑函数表达式中乘积项的特点以及各乘积项之间的关系,可分5种一般形式。例:,.,107,最小项表达式,最小项及最小项表达式,如果一个具有n个变量的函数的“积”项包含全部n个变量,每个变量都以原变量或反变量形式出现,且仅出现一次,则这个“积”项被称为最小项,也叫标准积。,假如一个函数完全由最小项的和组成,那么该函数表达式称为最小项表达式。,.,108,例:三变量函数的最小项:,编号规则:原变量取1,反变量取0。,.,109,.,110,最小项的性质:,1)只有一组取值使mi1。,3)全部最小项之和等于1,即mi1。,.,111,最小项的性质(续),5)当函数以最小项之和形式表示时,可很容易列出函数及反函数的真值表(在真值表中,函数所包含的最小项填“1”)。,4)n变量的最小项有n个相邻项。,一对相邻项之和可以消去一个变量。,相邻项:只有一个变量不同(以相反的形式出现)。,.,112,最小项表达式的求法,方法,.,113,用真值表法求最小项表达式,.,114,由一般表达式直接写出最小项表达式(了解),所以:F=m(1,3,4,5),.,115,最大项表达式(自学),最大项及最大项表达式,如果一个具有n个变量的函数的“和”项包含全部n个变量,每个变量都以原变量或反变量形式出现,且仅出现一次,则这个“和”项被称为最大项,也叫标准和。假如一个函数完全由最大项的积组成,那么该函数表达式称为最大项表达式。,.,116,例:三变量函数的最大项:,编号规则:原变量取0,反变量取1。,.,117,所以与最小项类似,有,.,118,最大项的性质:,1)只有一组取值使Mi0。,3)全部最大项之积等于0,即Mi0。,.,119,最大项的性质(续),4)n变量的最大项有n个相邻项。,一对相邻项之积可以消去一个变量。,5)当函数以最大项之积形式表示时,可很容易列出函数及反函数的真值表(在真值表中,函数所包含的最大项填“0”)。,.,120,以最小项之和的形式表示的函数可以转换成最大项之积的形式,反之亦然。,=m(2,3,6,7),而:,.,121,?,举例说明:Mi和mi的关系,.,122,三、逻辑函数的化简,同一个逻辑函数可以有多种表达形式,一种形式的表达式,对应一种电路,尽管它们的形式不同,但实现的逻辑功能相同,所以在实现某种函数的电路时,重要的是如何处理函数,以尽量少的单元电路、以及电路类型来达到目的。,化简的意义:电路简单使用已有器件,化简的方法:代数化简法(公式法)掌握卡诺图化简法熟练掌握列表化简法不要求,.,123,该方法运用逻辑代数的公理、定理和规则对逻辑函数进行推导、变换而进行化简,没有固定的步骤可以遵循,主要取决于对公理、定理和规则的熟练掌握及灵活运用的程度。有时很难判定结果是否为最简。,代数化简法,.,124,1)表达式中与项的个数最少;,2)在满足1)的前提下,每个与项中的变量个数最少。,解:,函数表达式一般化简成与或式,其最简应满足的两个条件:,.,125,.,126,例:,反演,.,127,卡诺图化简法,将n个输入变量的全部最小项用小方块阵列图表示,并且将逻辑相邻的最小项放在相邻的几何位置上,所得到的阵列图就是n变量的卡诺图。,卡诺图的每一个方块(最小项)代表一种输入组合,并且把对应的输入组合注明在阵列图的上方和左方。,.,128,变量卡诺图二变量卡诺图(A,B),一对相邻的最小项之和可以消去一个变量。,.,129,三变量卡诺图,一对相邻的最小项之和可以消去一个变量。,.,130,四变量卡诺图,一对相邻的最小项之和可以消去一个变量。,.,131,五变量卡诺图(不要求),对称轴,n5变量的卡诺图,可由n1变量卡诺图在需要增加变量的方向采用镜像变换而生成。,.,132,说明:,2个或以上变量,按循环码规则排列;每个小方格对应一个最小项;相邻方格的最小项,具有逻辑相邻性,即有一个变量互为反变量;具有逻辑相邻性的方格有:相接几何相邻的方格;相对上下两边、左右两边的方格;相重多变量卡诺图,以对称轴相折叠,重在一齐的方格。,逻辑相邻的最小项可以消去互补变量,.,133,三变量卡诺图逻辑相邻举例,相接,相对,.,134,四变量卡诺图逻辑相邻举例,相接,.,135,五变量卡诺图逻辑相邻举例(不要求),对称轴,.,136,函数卡诺图,用卡诺图法对逻辑函数进行化简时,首先要确定函数与卡诺图的关系,将函数用卡诺图的形式表现出来。,真值表、表达式、卡诺图都可以表达一个逻辑函数。,.,137,由真值表填卡诺图,1111,0000,.,138,例如:,.,139,由一般与或式填卡诺图示例:三变量(了解),11,11,.,140,示例:四变量(了解),1,.,141,函数的卡诺图化简,方法:1)填写函数卡诺图;2)合并最小项,对邻项方格画卡诺圈(含2n方格);3)消去互补变量,直接写出最简与或式。,.,142,画圈原则:,圈尽量大消去的变量多圈尽量少结果乘积项少要有新成份没有冗余项,使用方法:,圈1得到F原函数圈0得到F反函数(了解),画的圈不同,结果的表达式形式可能不同,但肯定是最简的结果。,圈1个格消0个变量圈21圈42圈83,.,143,01,01,A,B,11,1,二变量卡诺图的典型合并情况,.,144,BC,三变量卡诺图的典型合并情况,.,145,00011110,四变量卡诺图的典型合并情况,.,146,无效圈示例1,.,147,无效圈示例2,AB,CD,00,01,11,10,00,01,1,1,1,1,1,1,1,1,1,1,1,11,10,1,没有新变量.无效圈.,.,148,F=AB+BC,例1:卡诺图化简,.,149,F(A,B,C,D)=(0,2,3,5,6,8,9,10,11,12,13,14,15),例2:化简,.,150,例3:化简,.,151,F(A,B,C,D)=m(0,5,7,9,10,12,13,14,15),解:,例4:用卡诺图化简逻辑函数,.,152,不同的圈法,得到不同的最简结果,F(A,B,C,D)=m(2,3,8,9,10,12,13),例5:用卡诺图化简逻辑函数,.,153,例6:用卡诺图把逻辑函数(不要求)F(A,B,C,D)=M(3,4,6,7,11,12,13,14,15)化简成最简或与表达式。,.,154,1,00011110,00011110,CD,AB,0,1,1,0,0,1,1,1,0,0,0,0,0,0,1,原函数为0时,反函数为1.此处圈0,应理解为对反函数是圈1.,.,155,包含无关最小项的逻辑函数的化简,无关最小项:一个逻辑函数,如果它的某些输入取值组合因受特殊原因制约而不会再现,或者虽然每种输入取值组合都可能出现,但此时函数取值为1还是为0无关紧要,那么这些输入取值组合所对应的最小项称为无关最小项。无关最小项用“d”或者“”表示。,逻辑函数化简中两个实际问题的考虑,无关最小项可以随意加到函数表达式中,或不加到函数表达式中,并不影响函数的实际逻辑功能。其值可以取1,也可以取0。,.,156,无关最小项举例,例1:十字路口红绿灯,设控制信号G=1绿灯亮;控制信号R=1红灯亮;则GR可以为GR=00、01、10,但GR11。,例2:电动机正反转控制,设控制信号F=1正传;控制信号R=1反转;则FR可以为FR=00、01、10,但FR11。,例3:8421BCD码中,从10101111的六种编码不允许出现,可视为无关最小项。,.,157,解:,1)不考虑无关最小项:,例1:给定某电路的逻辑函数真值表如下,求F的最简与或式。,.,158,2)考虑无关最小项:,.,159,例2:已知真值表如图,用卡诺图化简。,.,160,化简时可以将无所谓状态当作1或0,目的是得到最简结果。,F=A,.,161,对于多输出逻辑函数,如果孤立地将单个输出一一化简,然后直接拼在一起,通常并不能保证整个电路最简,因为各个输出函数之间往往存在可供共享的部分。,多输出逻辑函数化简的标准:,2)在满足上述条件的前提下,各不同与项中所含的变量总数最少。,1)所有逻辑表达式包含的不同与项总数最小;,多输出逻辑函数的化简(不要求),.,162,例:多输出函数.,对应的卡诺图为,F1,F2共含4个不同的与项。,.,163,从多输出函数化简的观点来看,它们不是最佳的,应该是:,多输出逻辑函数的化简考试不要求,.,164,本章要求,熟练掌握逻辑代数的基本公式和规则。熟练掌握逻辑函数的公式法化简和卡诺图化简方法。作业:2.3(3,7)2.4(1,4,7,10)2.5(1,4)2.10(1,2,3,4,5,6),.,165,本章总结,1基本逻辑运算逻辑代数是逻辑学中的数学分支。在电子领域用二值变量进行描述,称布尔代数,统称逻辑代数。逻辑状态是指完全对立、截然相反的二种状态,如:好坏、开关等。逻辑变量是指代表逻辑状态的符号,取值0和1。逻辑代数中变量运算只有三种,即与、或、非等基本逻辑运算。与运算的运算法则是“有0出0,全1出1”,可以用串联开关电路说明。或运算的运算法则是“有1出1,全0出0”,可以用并联开关电路说明。真值表是指全部输入条件的所有组合与输出的关系。,.,166,本章总结,2逻辑函数的基本公式逻辑函数的基本公式包括基本运算公式、与普通代数类似的公式、逻辑代数的特有公式以及两种常用的运算公式等四大类。逻辑函数基本公式的证明方法包括真值表法和代数法。逻辑代数的重要规则包括反演规则、对偶规则和代入规则。反演规则和对偶规则的区别在于,对偶规则中变量保持不变。逻辑函数的表达形式包括函数表达式、真值表和卡诺图。,.,167,本章总结,3最小项假如一个函数完全由最小项的和组成,那么该函数表达式称为最小项表达式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论