已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一部分 专题六 第二讲 圆锥曲线的概念与性质、与弦有关的计算问题A组1抛物线y22px(p0)的焦点为F,O为坐标原点,M为抛物线上一点,且|MF|4|OF|,MFO的面积为4,则抛物线方程为( B )Ay26xBy28xCy216x Dy2x解析依题意,设M(x,y),因为|OF|,所以|MF|2p,即x2p,解得x,yp.又MFO的面积为4,所以p4,解得p4.所以抛物线方程为y28x.2若双曲线1(a0,b0)和椭圆1(mn0)有共同的焦点F1、F2,P是两条曲线的一个交点,则|PF1|PF2| ( D )Am2a2 B C(ma) Dma解析不妨设F1、F2分别为左、右焦点,P在双曲线的右支上,由题意得|PF1|PF2|2,|PF1|PF2|2,|PF1|,|PF2|,故|PF1|PF2|ma.3(文)若双曲线1的一条渐近线经过点(3,4),则此双曲线的离心率为( D )A BC D解析由题利用双曲线的渐近线经过点(3,4),得到关于a,b的关系式,然后求出双曲线的离心率即可因为双曲线1的一条渐近线经过点(3,4),3b4a,9(c2a2)16a2,e,故选D(理)已知双曲线1(b0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( D )A1 B1C1 D1解析根据圆和双曲线的对称性,可知四边形ABCD为矩形双曲线的渐近线方程为yx,圆的方程为x2y24,不妨设交点A在第一象限,由yx,x2y24得xA,yA,故四边形ABCD的面积为4xAyA2b,解得b212,故所求的双曲线方程为1,故选D4(2018重庆一模)已知圆(x1)2y2的一条切线ykx与双曲线C:1(a0,b0)有两个交点,则双曲线C的离心率的取值范围是( D )A(1,) B(1,2)C(,) D(2,)解析由题意,圆心到直线的距离d,所以k,因为圆(x1)2y2的一条切线ykx与双曲线C:1(a0,b0)有两个交点,所以,所以14,所以e2.5(2018济南一模)已知抛物线C:y28x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|( B )AB3CD2解析如图所示,因为4,所以,过点Q作QMl垂足为M,则MQx轴,所以,所以|MQ|3,由抛物线定义知|QF|QM|3.6(2018泉州一模)已知抛物线C:y22px(p0)的准线l,过M(1,0)且斜率为的直线与l相交于点A,与点C的一个交点为点B,若,则p2.解析设直线AB:yx,代入y22px得:3x2(62p)x30,又因为,即M为A,B的中点,所以xB()2,即xB2,得p24p120,解得p2,p6(舍去)7已知双曲线x21的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为2.解析由已知得A1(1,0),F2(2,0)设P(x,y)(x1),则(1x,y)(2x,y)4x2x5.令f(x)4x2x5,则f(x)在1,)上单调递增,所以当x1时,函数f(x)取最小值,即取最小值,最小值为2.8已知椭圆C:1,点M与椭圆C的焦点不重合若M关于椭圆C的焦点的对称点分别为A,B,线段MN的中点在椭圆C上,则|AN|BN|12.解析取MN的中点G,G在椭圆C上,因为点M关于C的焦点F1,F2的对称点分别为A,B,故有|GF1|AN|,|GF2|BN|,所以|AN|BN|2(|GF|1|GF|2)4a12.9(2018郴州三模)已知抛物线E:y28x,圆M:(x2)2y24,点N为抛物线E上的动点,O为坐标原点,线段ON的中点P的轨迹为曲线C(1)求曲线C的方程;(2)点Q(x0,y0)(x05)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于A,B两点,求QAB面积的最小值解析(1)设P(x,y),则点N(2x,2y)在抛物线E:y28x上,所以4y216x,所以曲线C的方程为y24x.(2)设切线方程为yy0k(xx0)令y0,可得xx0,圆心(2,0)到切线的距离d2,整理可得(x4x0)k2(4y02x0y0)ky40,设两条切线的斜率分别为k1,k2,则k1k2,k1k2,所以QAB面积S|(x0)(x0)|y0222(x01)2设tx014,),则f(t)2(t2)在4,)上单调递增,所以f(t),即QAB面积的最小值为.B组1若a1,则双曲线y21的离心率的取值范围是( C )A(,)B(,2)C(1,)D(1,2)解析由题意得双曲线的离心率e.e21.a1,01,112,1eb0)的左焦点,A,B分别为C的左,右顶点P为C上一点,且PFx轴过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( A )A B C D解析解法一:设E(0,m),则直线AE的方程为1,由题意可知M(c,m),(0,)和B(a,0)三点共线,则,化简得a3c,则C的离心率e.解法二:如图所示,由题意得A(a,0),B(a,0),F(c,0)由PFx轴得P(c,)设E(0,m),又PFOE,得,则|MF|.又由OEMF,得,则|MF|.由得ac(ac),即a3c,所以e.故选A3(文)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点已知|AB|4,|DE|2,则C的焦点到准线的距离为( B )A2 B4 C6 D8解析由题意,不妨设抛物线方程为y22px(p0),由|AB|4,|DE|2,可取A(,2),D(,),设O为坐标原点,由|OA|OD|,得85,得p4.故选B(理)已知椭圆C1:y21(m1)与双曲线C2:y21(n0)的焦点重合,e1,e2分别为C1,C2的离心率,则( A )Amn且e1e21 Bmn且e1e21Cm1 Dmn且e1e2n,又(e1e2)211,所以e1e21.故选A4已知M(x0,y0)是曲线C:y0上的一点,F是曲线C的焦点,过M作x轴的垂线,垂足为点N,若0,则x0的取值范围是( A )A(1,0)(0,1) B(1,0)C(0,1) D(1,1)解析由题意知曲线C为抛物线,其方程为x22y,所以F(0,)根据题意,可知N(x0,0),x00,(x0,y0),(0,y0),所以y0(y0)0,即0y0.因为点M在抛物线上,所以有0.又x00,解得1x00或0x00,b0),由题意可知,将xc代入,解得:y,则|AB|,由|AB|22a,则b22a2,所以双曲线离心率e.7已知椭圆1(ab0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为点C,若SABC3SBCF2,则椭圆的离心率为.解析如图所示,因为SABC3SBCF2,所以|AF2|2|F2C|.A(c,),直线AF2的方程为:y0(xc),化为:y(xc),代入椭圆方程1(ab0),可得:(4c2b2)x22cb2xb2c24a2c20,所以xC(c),解得xC.因为2,所以c(c)2(c),化为:a25c2,解得e.8设F1,F2为椭圆C:1(ab0)的焦点,过F2的直线交椭圆于A,B两点,AF1AB且AF1AB,则椭圆C的离心率为.解析设|AF1|t,则|AB|t,|F1B|t,由椭圆定义有:|AF1|AF2|BF1|BF2|2a,所以|AF1|AB|F1B|4a,化简得(2)t4a,t(42)a,所以|AF2|2at(22)a,在RtAF1F2中,|F1F2|2(2c)2,所以(42)a2(22)a2(2c)2,所以()296()2,所以e.9(文)设F1、F2分别是椭圆E:1(ab0)的左、右焦点,过点F1的直线交椭圆E于A、B两点,|AF1|3|F1B|.(1)若|AB|4,ABF2的周长为16,求|AF2|;(2)若cosAF2B,求椭圆E的离心率解析(1)由|AF1|3|F1B|及|AB|4得|AF1|3,|F1B|1,又ABF2的周长为16,由椭圆定义可得4a16,|AF1|AF2|2a8.|AF2|2a|AF1|835.(2)设|F1B|k,则k0且|AF1|3k,|AB|4k,由椭圆定义知:|AF2|2a3k,|BF2|2ak,在ABF2中,由余弦定理得,|AB|2|AF2|2|BF2|22|AF2|BF2|cosAF2B,即(4k)2(2a3k)2(2ak)2(2a3k)(2ak),(ak)(a3k)0,而ak0,a3k,于是有|AF2|3k|AF1|,|BF2|5k,|BF2|2|F2A|2|AB|2F2AAB,F2AAF1,AF1F2是等腰直角三角形,从而ca,所以椭圆离心率为e.(理)设点F1(c,0),F2(c,0)分别是椭圆C:y21(a1)的左、右焦点,P为椭圆C上任意一点,且的最小值为0.(1)求椭圆C的方程;(2)如图,动直线l:ykxm与椭圆C有且仅有一个公共点,作F1Ml,F2Nl分别交直线l于M,N两点,求四边形F1MNF2面积S的最大值解析本题主要考查平面向量数量积的坐标运算、椭圆的方程及几何性质、直线与椭圆的位置关系、基本不等式(1)设P(x,y),则(cx,y),(cx,y),x2y2c2x21c2,xa,a,由题意得,1c20,c1,则a22,椭圆C的方程为y21.(2)将直线l的方程l:ykxm代入椭圆C的方程y21中,得(2k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年空间环境艺术设计项目合作计划书
- 年产1.2万吨NFC果汁项目环评报告表
- 2024贷款中介网贷居间服务合同
- 2024年医用核素设备项目发展计划
- 智能充电桩财务风险控制分析
- 小学跨学科教学中的学生表现分析
- 汇成经营部应急管理、应急预案培训考试
- 英语国家概况模拟测试-3
- 网络数据库应用项目设计
- 2024年醋酸丁酯项目建议书
- 肿瘤科小讲课 化疗药物的使用与护理
- 应用文写作证明信课件
- 急性呼吸窘迫综合征(ARDS)-公开课课件
- 二年级上册科学课件-《8.形状改变了》苏教版 (共15张PPT)
- 工程量漏项报告申请书800字(3篇)
- 创三甲资料盒(新)
- 六年级上册劳动 全册教案教学设计
- 《四季是怎样形成的》课件1
- 年产100万米预应力混凝土管桩生产项目可行性研究报告
- 计算机应用基础教案实训课教案
- 浙江省工程建设标准《普通幼儿园建设标准》
评论
0/150
提交评论