全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边行练习常见的梯形辅助线规律口诀为:梯形问题巧转化,变为和;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为和.基本图形如下:课后练习:1、如图,已知在梯形ABCD中,ABDC,D=60,C=45,AB=2,AD=4,求梯形ABCD的面积2、在梯形ABCD中,AD/BC,AB=DC=AD=2, BC=4,求B的度数及AC的长。3、已知等腰梯形ABCD中,ADBC,B60,AD2,BC8,求等腰梯形的周长。4、 如图所示,ABCD,AEDC,AE12,BD20,AC15,求梯形ABCD的面积。5、 在等腰梯形ABCD中,已知ADBC,对角线AC与BD互相垂直,且AD30,BC70,求BD的长. 6、 已知等腰梯形的锐角等于60,它的两底分别为15cm和49cm,求它的腰长. 7、 已知等腰梯形ABCD中,ADBC,ACBD,ADBC10,DEBC于E,求DE的长. 8、已知:如图,梯形ABCD中,ADBC,AB=DC,BAD、CDA的平分线AE、DF分别交直线BC于点E、F求证: CE=BF9、如图,在梯形中,求的长10、如图6,在梯形中,DE=EC,AB=4,AD=2,求的长11、已知:如图,梯形ABCD中,DCAB,AD=BC,对角线AC、BD交于点O,COD=60,若CD=3,AB=8,求梯形ABCD的高 12题图12、已知如图,直角梯形ABCD中,ADBC,ABBC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,APD中边AP上的高为 . 13、如图,在四边形中,AC平分BAD,求AC的长12.如图,在梯形中,两点在边上,且四边形是平行四边形(1)与有何等量关系?请说明理由;ADCFEB(2)当时,求证:是矩形13.已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长14如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接 ADFCEGB (1)求证:四边形是菱形; (2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么?AQDEBPCO15.在菱形中,对角线与相交于点,过点作交的延长线于点(1)求的周长;(2)点为线段上的点,连接并延长交于点求证: OABCMN16.在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当和平行时,求正方形旋转的度数;(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.17.如图,直线的解析式为,它与轴、轴分别相交于两点平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒()(1)求两点的坐标;(2)用含的代数式表示的面积;(3)以为对角线作矩形,记和重合部分的面积为,OMAPNylmxBOMAPNylmxBEPF当时,试探究与之间的函数关系式;在直线的运动过程中,当为何值时,为面积的?18.如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作AEF = 90,使EF交矩形的外角平分线BF于点F,设C(m,n)(1)若m = n时,如图,求证:EF = AE;(2)若mn时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由(3)若m = tn(t1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标xOEBAyCFxOEBAyCFxOEBAyCF19.已知正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG(1)求证:EG=CG;(2)将图中BEF绕B点逆时针旋转45,如图所示,取DF中点G,连接EG,CG问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由 DFBACE第19
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编本二年级上册语文第二至七单元(内容含课文口语交际及语文园地)全部教案
- 城市规划学徒指导手册
- 油气勘探钻探施工合同
- 劳务派遣员工健康检查
- 汽车制造锅炉房施工合同
- 环保项目严禁参与虚假环保承诺
- 硫酸厂宿舍楼施工协议
- 科技园区研发创新车库改造协议
- 石油公司出纳人员聘用合同
- 室内运动场地坪施工协议
- 2024年四川省达州市中考英语试题含解析
- 金融求职自我介绍
- 辽宁省大连市中山区2024-2025学年九年级上学期期中化学试题
- 天津市天津市红桥区2024-2025学年八年级上学期10月期中英语试题
- 湘教版(2024新版)七年级上册数学期中考试模拟测试卷(含答案)
- 期中试题-2024-2025学年六年级上册语文统编版
- 小学道德与法治《中华民族一家亲》完整版课件部编版
- 中建测评2024二测题库及答案
- 教科版六年级科学上册期中测试卷附答案
- DL-T 5190.1-2022 电力建设施工技术规范 第1部分:土建结构工程(附条文说明)
- 《血气分析六步法》演示幻灯片
评论
0/150
提交评论