已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题能力训练13空间中的平行与垂直专题能力训练第32页一、能力突破训练1.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C1答案:D解析:易知A1C1平面BB1D1D.B1O平面BB1D1D,A1C1B1O,故选D.2.如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在AEF内的射影为O.则下列说法正确的是()A.O是AEF的垂心B.O是AEF的内心C.O是AEF的外心D.O是AEF的重心答案:A解析:如图,易知PA,PE,PF两两垂直,PA平面PEF,从而PAEF,而PO平面AEF,则POEF,EF平面PAO,EFAO.同理可知AEFO,AFEO,O为AEF的垂心.3.,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有.(填写所有正确命题的编号)答案:解析:对于,若mn,m,n,则,的位置关系无法确定,故错误;对于,因为n,所以过直线n作平面与平面相交于直线c,则nc.因为m,所以mc,所以mn,故正确;对于,由两个平面平行的性质可知正确;对于,由线面所成角的定义和等角定理可知其正确,故正确的命题有.4.如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M平面CD1E,则点M的轨迹长度为.答案:2解析:如图所示,取A1B1的中点H,B1B的中点G,连接GH,C1H,C1G,EG,HF.可得四边形EGC1D1是平行四边形,C1GD1E.同理可得C1HCF.C1HC1G=C1,平面C1GH平面CD1E.点M是正方形ABB1A1内的动点,若C1M平面CD1E,则点M在线段GH上.点M的轨迹长度GH=12+12=2.故答案为2.5.下列命题中正确的是.(填上你认为正确的所有命题的序号)空间中三个平面,若,则;若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;若球O与棱长为a的正四面体各面都相切,则该球的表面积为6a2;在三棱锥P-ABC中,若PABC,PBAC,则PCAB.答案:解析:中也可以与相交;作平面与a,b,c都相交;中可得球的半径为r=612a;中由PABC,PBAC得点P在底面ABC的射影为ABC的垂心,故PCAB.6.(2019江苏,16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1平面DEC1;(2)BEC1E.证明(1)因为D,E分别为BC,AC的中点,所以EDAB.在直三棱柱ABC-A1B1C1中,ABA1B1,所以A1B1ED.又因为ED平面DEC1,A1B1平面DEC1,所以A1B1平面DEC1.(2)因为AB=BC,E为AC的中点,所以BEAC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C平面ABC.又因为BE平面ABC,所以C1CBE.因为C1C平面A1ACC1,AC平面A1ACC1,C1CAC=C,所以BE平面A1ACC1.因为C1E平面A1ACC1,所以BEC1E.7.如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是ABC=60的菱形,M为PC的中点.(1)求证:PCAD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.(1)证法一取AD的中点O,连接OP,OC,AC,依题意可知PAD,ACD均为正三角形,所以OCAD,OPAD.又OCOP=O,OC平面POC,OP平面POC,所以AD平面POC.又PC平面POC,所以PCAD.证法二连接AC,依题意可知PAD,ACD均为正三角形.因为M为PC的中点,所以AMPC,DMPC.又AMDM=M,AM平面AMD,DM平面AMD,所以PC平面AMD.因为AD平面AMD,所以PCAD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA.因为M为PC的中点,所以QMBC.在菱形ABCD中,ADBC,所以QMAD,所以A,Q,M,D四点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离.由(1)可知POAD,又平面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面PAD,所以PO平面ABCD,即PO为三棱锥P-ACD的高.在RtPOC中,PO=OC=3,PC=6,在PAC中,PA=AC=2,PC=6,边PC上的高AM=PA2-PM2=102,所以PAC的面积SPAC=12PCAM=126102=152.设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,得13SPACh=13SACDPO.因为SACD=3422=3,所以13152h=1333,解得h=2155,所以点D到平面PAM的距离为2155.8.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得,BFPF,BFEF,所以BF平面PEF.又BF平面ABFD,所以平面PEF平面ABFD.(2)解作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,HF的方向为y轴正方向,|BF|为单位长,建立如图所示的空间直角坐标系H-xyz.由(1)可得,DEPE.又DP=2,DE=1,所以PE=3.又PF=1,EF=2,故PEPF.可得PH=32,EH=32.则H(0,0,0),P0,0,32,D-1,-32,0,DP=1,32,32,HP=0,0,32为平面ABFD的法向量.设DP与平面ABFD所成角为,则sin=HPDP|HP|DP|=343=34.所以DP与平面ABFD所成角的正弦值为34.二、思维提升训练9.(2019山东潍坊一模)如图,在矩形ABCD中,M为BC的中点,将ABM沿直线AM翻折成AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列说法正确的是.(填序号)存在某个位置,使得CNAB;翻折过程中,CN的长是定值;若AB=BM,则AMB1D;若AB=BM=1,则当三棱锥B1-AMD的体积最大时,三棱锥B1-AMD的外接球的表面积是4.答案:解析:对于,如图1,取AD的中点E,连接EC交MD于点F,则NEAB1,NFMB1,如果CNAB1,由已知可得到ENNF,又ENCN,且三线NE,NF,NC共面共点,不可能,故错.图1图2对于,如图1,可得由NEC=MAB1(定值),NE=12AB1(定值),AM=EC(定值),由余弦定理可得NC2=NE2+EC2-2NEECcosNEC,所以NC是定值,故正确.对于,如图2,取AM的中点O,连接B1O,DO,若AMB1D,易得AM平面ODB1,即可得ODAM,从而AD=MD,显然不成立,可得不正确.对于,当平面B1AM平面AMD时,三棱锥B1-AMD的体积最大,易得AD的中点H就是三棱锥B1-AMD的外接球的球心,球半径为1,表面积是4.故正确.故答案为.10.如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,ADAB,AB=2,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:EFA1D1;BA1平面B1C1EF.(2)求BC1与平面B1C1EF所成角的正弦值.(1)证明因为C1B1A1D1,C1B1平面ADD1A1,所以C1B1平面ADD1A1.因为平面B1C1EF平面ADD1A1=EF,所以C1B1EF.所以A1D1EF.因为BB1平面A1B1C1D1,所以BB1B1C1.因为B1C1B1A1,所以B1C1平面ABB1A1,所以B1C1BA1.在矩形ABB1A1中,F是AA1的中点,即tanA1B1F=tanAA1B=22,即A1B1F=AA1B.故BA1B1F.又B1FB1C1=B1,所以BA1平面B1C1EF.(2)解设BA1与B1F的交点为H,连接C1H(如图).由(1)知BA1平面B1C1EF,所以BC1H是BC1与平面B1C1EF所成的角.在矩形ABB1A1中,AB=2,AA1=2,得BH=46.在RtBHC1中,BC1=25,BH=46,得sinBC1H=BHBC1=3015.所以BC1与平面B1C1EF所成角的正弦值是3015.11.如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.沿AE将ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC平面DFK?若存在,请证明你的结论;若不存在,请说明理由.(2)若平面ADE平面ABCE,求证:平面BDE平面ADE.(1)解线段AB上存在一点K,且当AK=14AB时,BC平面DFK.证明如下:设H为AB的中点,连接EH,则BCEH.又因为AK=14AB,F为AE的中点,所以KFEH,所以KFBC.因为KF平面DFK,BC平面DFK,所以BC平面DFK.(2)证明因为F为AE的中点,DA=DE=1,所以DFAE.因为平面ADE平面ABCE,所以DF平面ABCE.因为BE平面ABCE,所以DFBE.又因为在折起前的图形中E为CD的中点,AB=2,BC=1,所以在折起后的图形中AE=BE=2,从而AE2+BE2=4=AB2,所以AEBE.因为AEDF=F,所以BE平面ADE.因为BE平面BDE,所以平面BDE平面ADE.12.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=3,点D为AC的中点,点E在线段AA1上.(1)当AEEA1=12时,求证:DEBC1.(2)是否存在点E,使三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的13?若存在,求AE的长,若不存在,请说明理由.(1)证明因为三棱柱ABC-A1B1C1为正三棱柱,所以ABC是正三角形.因为D是AC的中点,所以BDAC.又平面ABC平面CAA1C1,所以BDDE.因为AEEA1=12,AB=2,AA1=3,所以AE=33,AD=1,所以在RtADE中,ADE=30.在RtDCC1中,C1DC=60,所以EDC1=90,即DEDC1.因为C1DBD=D,所以DE平面BC1D,所以DEBC1.(2)解假设存在点E满足题意.设AE=h,则A1E=3-h,所以SDEC1=S四边形AA1C1C-SAED-SDCC1-SEA1C1=23-12h-(3-h)-32=32+12h.因为BD平面ACC1A1,所以VC1-BDE=VB-C1DE=1332+12h3=12+36h,又V棱柱=12233=3,所以12+36h=1,解得h=33,故存在点E,当AE=3,即E与A1重合时,三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的13.13.如图,在四边形ABCD中(如图),E是BC的中点,DB=2,DC=1,BC=5,AB=AD=2.将ABD(如图)沿直线BD折起,使二面角A-BD-C为60(如图).(1)求证:AE平面BDC;(2)求异面直线AB与CD所成角的余弦值;(3)求点B到平面ACD的距离.(1)证明如图,取BD的中点M,连接AM,ME.AB=AD=2,DB=2,AMBD.DB=2,DC=1,BC=5满足DB2+DC2=BC2,BCD是以BC为斜边的直角三角形,BDDC,E是BC的中点,ME为BCD的中位线,ME12CD,MEBD,ME=12,AME是二面角A-BD-C的平面角,AME=60.AMBD,MEBD,且AM,ME是平面AME内两相交于M的直线,BD平面AEM.AE平面AEM,BDAE.ABD为等腰直角三角形,AM=12BD=1.在AEM中,AE2=AM2+ME2-2AMMEcosAME=1+14-2112cos60=34,AE=32,AE2+ME2=1=AM2,AEME.BDME=M,BD平面BDC,ME平面BDC,AE平面BDC.(2)解取AD的中点N,连接MN,则MN是ABD的中位线,MNAB.又MECD,直线AB与CD所成角等于MN与ME所成的角,即EMN或其补角.AE平面BCD,DE平面BCD,AEDE.N为RtAED斜边的中点,NE=12AD=22,MN=12AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮应急方案
- 老年人电脑培训内容
- 关于春节的调查报告15篇
- 地板铺设脚手架施工合同范本
- 通信线路以此合同为准
- 住宅小区造价管理聘用合同
- 污水处理防水防腐施工合同
- 家电公司办公区门窗定制合同
- 产业园办公用房托管合同
- 商业综合体简易工程施工合同
- 五年级数学上册8解方程课件
- 教学工作中存在问题及整改措施
- 内部项目跟投协议书(正)
- 钢管静压桩质量监理细则
- 5000头奶牛养殖场新建项目环境评估报告书
- 16飞机颠簸教学课件
- IATF16949-过程审核检查表-(含审核记录)-
- 散文阅读精练(100篇优秀散文每篇均附能力训练)-现代文精练
- 《成本会计》考试复习题库(浓缩300题)
- 工作成功案例分享模板
- 安全管理的几点做法1000字
评论
0/150
提交评论