高中数学 11.2.1第1课时排列与组合精品课件同步导学 新人教A版选修23.ppt_第1页
高中数学 11.2.1第1课时排列与组合精品课件同步导学 新人教A版选修23.ppt_第2页
高中数学 11.2.1第1课时排列与组合精品课件同步导学 新人教A版选修23.ppt_第3页
高中数学 11.2.1第1课时排列与组合精品课件同步导学 新人教A版选修23.ppt_第4页
高中数学 11.2.1第1课时排列与组合精品课件同步导学 新人教A版选修23.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 2排列与组合 1 2 1排列 第1课时排列的概念及简单排列问题 1 理解并掌握排列的概念 2 能正确写出一些简单排列问题的所有排列 1 排列概念的理解 难点 2 排列的简单应用 重点 3 排列与排列个数的区别 易混点 2009年10月底 温家宝总理来到山东费县第一中学视察 听完一节课后与老师们座谈 有12位教师参加 面对总理坐成一排 问 这12位教师的坐法共有多少种 排列的相关概念及理解 并按一定顺序排成一列 相同 排列顺序 1 下列问题属于排列问题的是 从10个人中选2人分别去种树和扫地 从10个人中选2人去扫地 从班上30名男生中选出5人组成一个篮球队 从数字5 6 7 8中任取两个不同的数作幂运算 a b c d 解析 由排列的定义知 为排列问题 答案 a 2 从4 5 6三个数字中任取两个数字 组成两位数 组成不同的两位数共有 a 4个b 5个c 6个d 8个解析 从3个数字中选取2个数字组成两位数 共有a32 3 2 6个两位数 答案 c 3 有5名男生和2名女生 从中选出5人分别担任语文 数字 英语 物理 化学学科的课代表 则不同的选法共有 种 用数字作答 解析 由题意知 从7人中选出5人担任5个学科课代表 共有a75 2520种不同的选法 答案 2520 4 写出从4个元素a b c d中任取3个元素的所有排列 解析 由题意作树形图 如图故所有的排列为 abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb 共有24个 下列问题是排列问题吗 请说明理由 1 从1 2 3 4四个数字中 任选两个做减法 其结果有多少种不同的可能 2 从1 2 3 4四个数字中 任选两个做乘法 其结果有多少种不同的可能 3 有12个车站 共需准备多少种车票 4 从学号1到10的十名同学中任抽两名同学去学校开座谈会 有多少种选法 5 平面上有5个点 其中任意三点不共线 这5点最多可确定多少条直线 解题过程 两点确定一条直线 与两点顺序无关 故 5 不是排列 5 所选取两名同学参加座谈会 无顺序之分 故 4 不是排列 4 车票与始点站和终点站有关 由排列定义知 3 是排列 3 由加法及乘法定义知 结果都与两数相乘的顺序无关 故 2 不是排列 2 1 3 由减法及除法定义知 结果都与两数相减的顺序有关 故 1 是排列 1 结果 各问题研析 问题 题后感悟 判断一个问题是否为排列问题的依据是是否有顺序 有顺序且是从n个不同的元素中任取m m n 个不同的元素的问题就是排列 否则就不是排列 而检验它是否有顺序的依据就是变换元素的位置 看其结果是否有变化 有变化就是有顺序 无变化就是无顺序 1 判断下列问题是否是排列问题 1 从1 2 3 4四个数字中 任选两个做加法 有多少种不同的结果 2 从1 2 3 4四个数字中 任选两个做除法 有多少种不同的结果 3 某班共有50名同学 现要投票选举正 副班长各一人 共有多少种可能的选举结果 4 从2 3 5 7 9中任取两数分别作对数的底数和真数 有多少不同对数值 5 从1到10十个自然数中任取两个数组成点的坐标 可得多少个不同的点的坐标 解析 1 由于加法运算满足交换律 所以选出的两个元素做加法时 与两元素的位置无关 故加法不是排列问题 2 做除法时 两元素谁做除数 谁做被除数不一样 此时与位置有关 故做除法是排列问题 3 是排列问题 选出的2人 担任正 副班长任意 与顺序有关 所以该问题是排列问题 4 是排列问题 显然对数值与底数和真数的取值的不同有关系 与顺序有关 5 是排列问题 任取两个数组成点的坐标 横 纵坐标的顺序不同 即为不同的坐标 与顺序有关 6 不是排列问题 焦点在x轴上的椭圆 方程中的a b必有a b a b的大小一定 将玫瑰花 月季花 莲花各一束分别送给甲 乙 丙三人 每人一束 共有多少种不同的分法 请将它们列出来 利用树形图来表示 解题过程 按分步乘法计数原理的步骤 第一步 分给甲 有3种分法 第二步 分给乙 有2种分法 第三步 分给丙 有1种分法 故共有3 2 1 6 种 不同的分法 列出树形图 如下 甲乙丙玫瑰花月季花莲花玫瑰花莲花月季花月季花玫瑰花莲花月季花莲花玫瑰花莲花玫瑰花月季花莲花月季花玫瑰花 题后感悟 树形图 在解决排列问题个数不多的情况时 是一种比较有效的表示方式 在操作中先将元素按一定顺序排出 然后以先安排哪个元素为分类标准 进行分类 在每一类中再按余下的元素在前面元素不变的情况下确定第二位元素 再按此元素分类 依次进行 直到完成一个排列 这样能做到不重不漏 然后再按树形图写出排列 2 北京 上海 香港 台北四个民航站之间的直达航线 需要准备多少种不同的飞机票 将它们列出来 解析 先确定起点 有4种方法 再确定终点 有3种方法 由分步乘法计数原理知 共需要4 3 12 种 不同的机票 列举如下 a b c d四名同学重新换位 每个同学都不能坐其原来的位子 试列出所有可能的换位方法 1 本题是一个有限制条件的排列问题 2 假设a b c d四名同学原位子分别为1 2 3 4号 则有如下限制条件 解答本题可以按位置排法的可能性分类 列树形图解决 规范解答 假设a b c d四名同学原来的位子分别为1 2 3 4号 列出树形图如下 位置编号6分换位后 原来1 2 3 4号座位上坐的同学的所有可能排法有 badc bcda bdac cadb cdab cdba dabc dcab dcba 12分 题后感悟 有限制条件的排列问题应注意限制条件是 位置 还是 元素 解决这类问题时应注意特殊位置 特殊元素优先考虑的原则 做到不重不漏 有些非数学化的问题 可以转化为数学问题后再求解 为了形象直观 可借助树形图 3 四人a b c d坐成一排 其中a不坐在排头 写出所有的坐法 解析 由 树形图 可知 所有坐法为bacd badc bcad bcda bdac bdca cabd cadb cbad cbda cdab cdba dacb dabc dbac dbca dcab dcba 1 对排列定义的理解 1 定义的两个重要因素一是 取出元素 二是 将元素按一定顺序排列 这是排列的两个重要因素 也是与后面将要学习的组合的不同 2 每一个排列不仅与选取的元素有关 而且还与元素的排列顺序有关 选取的元素不同或虽元素相同但元素的排列顺序不同时都是不同的排列 只有当两个排列的元素完全相同且元素的顺序完全一样时才是相同的排列 3 在定义中规定m n 如果m n 一般称为选排列 如果m n 则称为全排列 2 如何判断一个具体问题是否为排列问题 1 首先要保证元素的无重复性 即是从n个不同元素中取出m m n 个不同的元素 否则不是排列问题 2 其次要保证元素的有序性 即安排这m个元素时是有顺序的 有序的就是排列 无序的不是排列 而检验它是否有顺序的依据是变换元素的位置 看结果是否发生变化 有变化就是有顺序 无变化就是无顺序 特别提醒 排列的本质特征是每一个排列不仅与所选取的元素有关 而且与这些元素的排列顺序也有关 从1 2 3 4 7 9这六个数中任取两个数分别作为一个对数的底数与真数 可组成多少个不同的对数值 错解 符合条件的对数值可分为两类 第1类 若1为真数 而2 3 4 7 9中任何一个为底数 得的对数值均为零 仅1个 第2类 若2 3 4 7 9中任何一个为真数 而不能作底数 其底在余下的4个数中选1个 共有不同的对数值5 4 20 个 综上 共有21个不同的对数值 错因 审题不细 重复计算 忽略了对数值相同的情况 log24 log39 log42 log93 log23 log49 log32 log94 审题细致 避免重复 遗漏 对数性质loganbn logab a 0 a 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论