




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三课时定点、定值、存在性专题【选题明细表】知识点、方法题号圆锥曲线的定点问题1,4,5圆锥曲线的定值问题7圆锥曲线的存在性问题2,3,61.(2015江西九江二模)已知椭圆C:+=1(ab0)的离心率为,M是椭圆C上任意一点,且点M到椭圆C右焦点F距离的最小值是-1.(1)求椭圆C的方程;(2)已知A,B是椭圆C的左、右顶点,当点M与A,B不重合时,过点F且与直线MB垂直的直线交直线AM于点P,求证:点P在定直线上.(1)解:由条件知a-c=-1,又=.解得a=,c=1,所以椭圆C的方程为+y2=1.(2)证明:设M(x0,y0)(y00),则+=1,直线AM的方程为y=(x+), 因为FPMB,所以直线FP的方程为y=-(x-1),联立得x+=-(x-1), 又+=1,即-=2, 将代入得x=2+,所以点P在定直线x=2+上.2.(2016郑州模拟)已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合).(1)求曲线E的方程;(2)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值.若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.解:(1)设点P(x,y),由题意可得=,整理可得+y2=1.曲线E的方程是+y2=1.(2)设C(x1,y1),D(x2,y2),由已知可得|AB|=.当m=0时,不合题意.当m0时,由直线l与圆x2+y2=1相切,可得=1,即m2+1=n2.联立消去y得(m2+)x2+2mnx+n2-1=0,=4m2n2-4(m2+)(n2-1)=2m20,x1=,x2=,S四边形ACBD=|AB|x2-x1|=,当且仅当2|m|=,即m=时等号成立,此时n=,经检验可知,直线l的方程为y=x-或直线y=-x+时四边形ACBD的面积最大,最大值为.3.(2016陕西模拟)已知A是椭圆M:x2+5y2=5与y轴正半轴的交点,F是椭圆M的右焦点,过点F的直线l与椭圆M交于B,C两点.(1)若|OB|=|OC|,求B,C两点的坐标;(2)是否存在直线l,使得|AB|=|AC|?若存在,求出直线l的方程,若不存在,请说明理由.解:(1)由x2+5y2=5可得+y2=1,所以c=2,所以F(2,0),A(0,1).由椭圆的对称性可知,满足|OB|=|OC|的直线l有两种:当直线lx轴时,令x=2,y=.所以B,C两点的坐标分别为(2,)和(2,-).当直线l与x轴重合时,B,C两点的坐标分别为(,0)和(-,0).(2)易知,当直线l与x轴重合时,|AB|=|AC|,此时直线l的方程为y=0.当直线l与x轴垂直时,直线l不符合题意.当直线l与坐标轴不垂直时,设过点F的直线的斜率为k,直线l与椭圆M的交点B(x1,y1),C(x2,y2),BC的中点N(x0,y0),则l:y=k(x-2).联立得(1+5k2)x2-20k2x+20k2-5=0,所以x1+x2=.所以x0=,y0=,所以要使|AB|=|AC|,只要ANBC.所以k=-1,所以5k2-8k+1=0,所以k=,所以直线l的方程为y=(x-2).综上,符合题意的直线l的方程为y=0或y=(x-2).4.(2015吉林东北师大附中三模)已知双曲线C的中心在坐标原点,焦点在x轴上,离心率e=,虚轴长为2.(1)求双曲线C的标准方程;(2)若直线l:y=kx+m与双曲线C相交于A,B两点(A,B均异于左、右顶点),且以AB为直径的圆过双曲线C的左顶点D,求证:直线l过定点,并求出该定点的坐标.(1)解:由题设双曲线的标准方程为-=1(a0,b0),由已知得=,2b=2,又a2+b2=c2,解得a=2,b=1,所以双曲线的标准方程为-y2=1.(2)证明:设A(x1,y1),B(x2,y2),联立得(1-4k2)x2-8mkx-4(m2+1)=0,则x1+x2=,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=.以AB为直径的圆过双曲线C的左顶点D(-2,0),所以kADkBD=-1,即=-1,所以y1y2+x1x2+2(x1+x2)+4=0,所以+4=0,所以3m2-16mk+20k2=0.解得m=2k或m=.当m=2k时,l的方程为y=k(x+2),直线过定点(-2,0),与已知矛盾;当m=时,l的方程为y=k(x+),直线过定点(-,0),经检验符合已知条件.故直线l过定点,定点坐标为(-,0).5.(2016开封模拟)已知抛物线C:x2=4y.(1)设P为直线l:x-y-2=0上的点,过点P作抛物线C的两条切线PA,PB,当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(2)当点P在直线l上移动时,求|AF|BF|的最小值.解:(1)抛物线C的方程为x2=4y,即y=x2,求导得y=x.设A(x1,y1),B(x2,y2)(其中y1=,y2=),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以(x1,y1),(x2,y2)为方程x0x-2y0-2y=0的两组解.故直线AB的方程为x0x-2y-2y0=0.(2)由抛物线定义可知|AF|=y1+1,|BF|=y2+1.所以|AF|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1,联立方程消去x整理得y2+(2y0-)y+=0,由根与系数的关系可得y1+y2=-2y0,y1y2=,所以|AF|BF|=y1y2+(y1+y2)+1=+-2y0+1.又点P(x0,y0)在直线l上,所以x0=y0+2,所以+-2y0+1=2+2y0+5=2(y0+)2+,所以当y0=-时,|AF|BF|取得最小值,且最小值为.6.(2015西安模拟)已知椭圆C:+=1(ab0)经过点(1,),离心率为.(1)求椭圆C的方程;(2)直线y=k(x-1)(k0)与椭圆C交于A,B两点,点M是椭圆C的右顶点,直线AM与直线BM分别与y轴交于点P,Q,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.解:(1)由题意得解得a=2,b=1.所以椭圆C的方程是+y2=1.(2)以线段PQ为直径的圆过x轴上的定点,由得(1+4k2)x2-8k2x+4k2-4=0,设A(x1,y1),B(x2,y2),则有x1+x2=,x1x2=.又因为点M是椭圆C的右顶点,所以点M(2,0),由题意可知直线AM的方程为y=(x-2),故点P(0,-).直线BM的方程为y=(x-2),故点Q(0,-).若以线段PQ为直径的圆过x轴上的定点N(x0,0),则等价于=0恒成立,又因为=(x0,),=(x0,),所以=+=+=0恒成立,又因为(x1-2)(x2-2)=x1x2-2(x1+x2)+4=-2+4=,y1y2=k(x1-1)k(x2-1)=k2x1x2-(x1+x2)+1=k2(-+1)=,所以+=+=-3=0,解得x0=.即x轴上的定点为(,0)或(-,0).故以线段PQ为直径的圆过x轴上的定点(,0).7.(2016枣庄模拟)已知椭圆C:+=1(ab0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且MNF2的周长为8.(1)求椭圆C的方程;(2)过原点O的两条互相垂直的射线与椭圆C分别交于A,B两点,求证:点O到直线AB的距离为定值,并求出这个定值.解:(1)由题意知4a=8,所以a=2.因为e=,所以=1-e2=,所以b2=3.所以椭圆C的方程为+=1.(2)由题意,当直线AB的斜率不存在时,可设A(x0,x0),B(x0,-x0).又A,B两点在椭圆C上,所以+=1,即=,所以点O到直线AB的距离d=.当直线AB的斜率存在时,设直线AB的方程为y=kx+m.由消去y得(3+4k2)x2+8kmx+4m2-12=0,由0得3+4k2m2.设A(x1,y1),B(x2,y2),则y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学英语论文:“国培计划”小学英语名师研修的探索问题和解决方式
- 企业策划服务合同样本
- 公司住宿协议合同标准文本
- 公司经营承包合同书范例二零二五年
- 养殖场用工合同
- 美发店两人合伙合同二零二五年
- 大体积砼温度监测方案
- 恋爱赠与协议
- 转让抚养权孩子协议书
- 3方合资合同样本
- 2024年四川省成都市高新区中考数学二诊试卷
- 2024年社区工作者考试必考1000题附完整答案【典优】
- 穴位贴敷治疗失眠
- WMT8-2022二手乘用车出口质量要求
- 30题质量检验员岗位常见面试问题含HR问题考察点及参考回答
- 痛经(中医妇科学)
- 智能灯具故障排除方案
- 汽车租赁服务投标方案
- 20道瑞幸咖啡营运经理岗位常见面试问题含HR常问问题考察点及参考回答
- 教师调课申请表
- 学前一年家庭经济困难幼儿生活费补助申请表
评论
0/150
提交评论