




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012考研数学启动计划:复习全程规划让复习更给力-李永乐考研数学总分值为150分,占考研总分500分的30%,数学成绩的好坏直接决定总分的高低。考上一般学校的研究生数学应该拿到120左右的成绩,但是每年全国考生平均分数都不高。以09年为例:经济类平均77.59,理学平均68.1,可见数学想拿高分不是想像的那样简单。考研数学的复习和提高需要内外力的结合。这个比重大概为:内力60%,外力40%。通过大量的题型的练习,提高解题的速度加上名师对于试卷命题特点的分析、解题技巧和应试能力的点拨,往往可以理想的分数。 在整个考研数学的复习过程中,我们可以将其分为基础阶段、强化阶段、提高阶段、冲刺阶段,不同的阶段配备不同的课程、参考资料和复习策略: 第一是基础阶段:(6月份之前)这一阶段主要任务是吃透教材书的基本概念,基本方法和基本定理,做大部分课后习题,然后在听取海文基础课程从而达到夯实基础,训练数学思维,掌握一些基础题型的解题思路和技巧,为强化阶段打下坚实的基础。这一阶段主要的复习资料是课本。高等数学我们推荐同济大学出版社出版的第六版教材,线性代数看的是清华大学出版的第二版教材,概率看的是浙江大学出版的第三版教材,难度与考研难度一致。从讲解考研数学的考研命题规律和特点,到全年的学习过程进行科学规划指导,再到分析考纲规定的基础知识,到怎样把大纲要求和基础教材完美结合复习,整个基础复习的过程需要有一个完整的复习系统的指导,并且制定一个完整的规划。 第二是强化阶段:(9月份前)这一阶段应该对基本知识的思想有较为深刻的认识。增强高数、线代、概率三科之间联系。掌握更多的解题思路和方法,积累更多的解题技巧,拓宽解题思维,从而培养较强的应试能力。这一阶段可以脱离课本进行专项复习和练习了,我们建议大家可以用数学标准全书和它的配套练习册数学经典题集600题,它着重各类例题的讲解,通过这本书的学习能掌握大量解题技巧,再通过专项练习题的训练,极大的提高了单个知识模块的解题能力,为做像真题那样的综合题打下了坚实的基础。暑假是考研复习的黄金时间段,但是往往大家的自制力比较弱,白白浪费了宝贵的时间,如果能够好好运用每天12小时来学习,这样两个月之后与其他同学的备考差距就彻底拉开了。这个时候报辅导班,可以起到提纲挈领集中复习以及监督复习时间和效率的作用,效果会很好。 第三是提高阶段(10月-11月)这一阶段的主要任务是通过大量实战训练,逐步适应3个小时的考试,并通过对做错题目的总结,发现自己的不足从而对自己不足的地方进行集中训练,弥补不足。具体的方法是做历年真题了,最好真题能够配有详细的解析,这样可以更好的帮助同学们分析真题的出题思路,掌握出题者的解题思路;同时,通过做真题套卷也能在一定程度上评估出自己的复习效果和应试实力。 第四是冲刺阶段(12月到考试前)此阶段通过分析总结真题把握真题出题规律与知识点的难易程度,总结每套真题中出现的问题并与改正,做完真题和模拟题后回归到教材上,把握教材当中重要定理、定义、推论的来龙去脉,并找到以前做过的资料中相应知识点对应的题型再做一遍,调整心态,积极迎考。切忌不要过于依赖题海战术,应该把注意力转到以前做过的错题上,尤其是纠正后的答题方法。总之,数学的复习是一个漫长的过程,要想取得好成绩一定要早动手、勤练习、重视课本,千万不要一味地追求难题怪题,这样反而本末倒置。 以下是具体的复习计划:高等数学复习规划第一章 函数与极限(10天)微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。日期 学习时间复习知识点与对应习题大纲要求第一周第二周2.53.5小时函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式. 习题11:4,5,7,8,9,13,15,181理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2了解函数的有界性、单调性、周期性和奇偶性3理解复合函数及分段函数的概念,了解反函数及隐函数的概念4掌握基本初等函数的性质及其图形,了解初等函数的概念.5理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系 6掌握极限的性质及四则运算法则.7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质2.53.5小时数列定义,数列极限的性质(唯一性、有界性、保号性 ) P26(例1,例2)P27(例3)习题12:1,3,4,5,62.53.5小时函数极限的基本性质(不等式 性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)P35(例7)习题13:1,2,4,6,7,82.53.5小时无穷小与无穷大的定义,它们之间的关系,以及与极限的关系习题14:1,2,4,5,6,72.53.5小时极限的运算法则(6个定理以及一些推论)P46(例3,例4),P47(例6),习题15:1,2,32.53.5小时两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限P51(例1)习题16:1,2,42.53.5小时无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法 P57(例1)P58(例5)习题17:1,2,3,42.53.5小时函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。例1例5习题18:2,3,4,52.53.5小时连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)例4例8 习题19:1,2,3,4,52.53小时理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).例1例2,习题110:1,2,3,4,53.5小时总复习题一:1,2,8,9,10,11,12第二章:导数与微分(7天)一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。日期学习时间复习知识点与对应习题大纲要求第二周第三周2.53.5小时导数的定义、几何意义、力学意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方程.例3例7 习题21:6,7,9,11,14,15,16,171.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系2掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3了解高阶导数的概念,会求简单函数的高阶导数4会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.。2.53.5小时复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法例例17 习题22:2,3,4,7,8,9,1012)2.53.5小时高阶导数和N阶导数的求法(归纳法,分解法,用莱布尼兹法则)例1例7 习题23:2,3,4,7,8,92.53.5小时由参数方程确定的函数的求导法,变限积分的求导法,隐函数的求导法例1例10 习题24:2,4,7,8,9,112.53.5小时函数微分的定义,微分运算法则,一元函数微分学的简单应用例1例6 习题25:1,2,3,4,5,6,2.53.5小时总复习题二:1,2,3,5,6,9,11,13第三章:微分中值定理与导数的应用(8天)连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。日期学习时间复习知识点与对应习题大纲要求第三周第四周2.53.5小时微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义)例1,习题31:1155理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理6掌握用洛必达法则求未定式极限的方法7理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用8会用导数判断函数图形的凹凸性会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形9了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径2.53.5小时洛比达法则及其应用 例1例10,习题32:142.53.5小时泰勒中值定理,麦克劳林展开式 例1例3 习题33:17,102.53.5小时求函数的单调性、凹凸性区间、极值点、拐点、渐进线(选择题及大题常考)例1例12 习题34:4,5,8,9,11,12,142.53.5小时函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题 例1例6 习题3-5:1,4,5,6,7,10,11,142.53.5小时简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握,一元函数的最值问题(三种情形)。例1例3 习题36:152.5小时总结本章知识点,总复习题三:112,19第四章:不定积分(7天)积分学是微积分的主要部分之一。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。日期学习时间复习知识点与对应习题大纲要求第四周-第五周2.53.5小时原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性,原函数的几何意义和力学意义例1例16 习题41:11理解原函数的概念,理解不定积分和定积分的概念2掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法 3会求有理函数、三角函数有理式和简单无理函数的积分4理解积分上限的函数,会求它的导数,掌握牛顿莱布尼茨公式5了解反常积分的概念,会计算反常积分2.53.5小时不定积分的换元积分法,第二类换元法 例1例272.53.5小时不定积分的计算 习题42:2(120)2.53.5小时不定积分的计算 习题42:2(2140)2.53.5小时不定积分的分部积分法 例1例10 习题43:1202.53.5小时不定积分计算,总复习题四:1152.53.5小时不定积分计算 总复习题四:1630第五章: 定积分(8天)日期学习时间复习知识点与对应习题大纲要求第五周第六周2.53.5小时定积分的概念与性质(可积存在定理)(定积分的7个性质)习题51:2,3,5,6,7,81理解原函数的概念,理解不定积分和定积分的概念2掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法 3会求有理函数、三角函数有理式和简单无理函数的积分4理解积分上限的函数,会求它的导数,掌握牛顿莱布尼茨公式5了解反常积分的概念,会计算反常积分2.53.5小时微积分的基本公式 积分上限函数及其导数 牛顿莱布尼兹公式 例1例8 习题52:152.53.5小时习题52:6122.53.5小时定积分的换元法与分部积分法 例1例10 习题53:12.53.5小时习题53:2112.53.5小时反常积分 无界函数反常积分与无穷限反常积分 例1例5 习题:54:132.53.5小时反常积分的审敛法 例1例8 习题55:132.53.5小时总复习题五:111 12,13第六章:定积分的应用(5天)日期学习时间复习知识点与对应习题大纲要求第六周第七周2.53.5定积分元素法 一元函数积分学的几何应用(求平面曲线的弧长与曲率,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转面的面积)例1例146掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值2.53.5定积分应用的一些计算 习题62:1152.53.5定积分的几何应用相关计算 习题62:16302.53.5总复习题六:16第十二章 常微分方程 (9天)常微分方程的研究对象就是常微分方程解的性质与求法,本章主要有两个问题,一是根据实际问题和所给条件建立含有自变量、未知函数及未知函数的导数的方程及相应的初始条件;二是求解方程,包括方程的通解和满足初始条件的特解。学习时间复习知识点与对应习题大纲要求2.53.5小时微分方程的基本概念(微分方程及其阶、解、通解、初始条件和特解),例1、2、3、4,习题12-1:1,2,3,4,5,61了解微分方程及其阶、解、通解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中语文 第三单元 戏剧 第13课 等待戈多(节选)教学设计 粤教版必修5
- 19夜宿山寺教学设计-2024-2025学年二年级上册语文统编版
- Unit 8 When is your birthday SectionA 1a-1c教学设计+教学设计
- 七下第二单元 吟哦涵泳传承家国情怀(教学设计)-初中语文核心素养学科教学专题培训系列
- 7 我是班级值日生 教学设计-2024-2025学年道德与法治二年级上册统编版
- 九年级语文上册 第三单元 课外古诗词诵读教学设计 新人教版
- 物品分类数学课件
- 22 我为环境添绿色(教学设计)人美版(2012)美术一年级下册
- 脊柱骨科护理三级查房
- Unit 7 Lesson 7 Reading for Writing 教学设计 2024-2025学年仁爱科普版(2024)七年级英语下册
- 探秘京剧脸谱(课件)六年级下册综合实践活动辽师大版
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 麦肯锡——大数据:创新、竞争和生产力的下一个前沿
- 人教版小学语文二年级《雷雨》PPT课件
- (医疗药品)药店拆零药品记录表
- 现浇箱梁盘扣式现浇支架施工方案(通过专家论证)
- 《监督法》讲座稿
- 热质交换课第05讲(习题课1)
- 直线与圆锥曲线之角形面积问题
- 群文阅读感受动物的形象教学设计
- 2020最新世界各国安规插头尺寸标准版
评论
0/150
提交评论