



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备课大师:免费备课第一站!教学时间课题21.2.1配方法(1)课型新授教学媒体多媒体教学目标知识技能1.理解一元二次方程“降次”的转化思想2.根据平方根的意义解形如x2=p(p0)的一元二次方程,然后迁移到解(mx+n)2=p(p0)型的一元二次方程3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.过程方法1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,对比获得一元二次方程的解法-直接开平方法,配方法情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情教学重点1.运用开平方法解形如(mx+n)2=p(p0)的方程;领会降次转化的数学思想2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点降次思想,配方法教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知l 探究课本问题1分析:1.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如 x2=p(p0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.l 解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如 x2=p(p0)或(mx+n)2=p(p0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n0).l 探究课本问题21.根据题意列方程并整理成一般形式.2.将方程 x2+6x-16=0和x2+6x+9=2对比,怎样将方程 x2+6x-16=0化为像 x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?完成填空: x2+6x+ =(x+ )2方程移项之后,两边应加什么数,可将左边配成完全平方式?l 归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n0)的形式.三、课堂训练课本练习:四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P16:1、2、3(1)(2)选做:下面补充作业补充作业:1若8x2-16=0,则x的值是_2如果方程2(x-3)2=72,那么,这个一元二次方程的两根是_3若x2-4x+p=(x+q)2,那么p、q的值分别是( ) Ap=4,q=2 Bp=4,q=-2 Cp=-4,q=2 Dp=-4,q=-24方程3x2+9=0的根为( ) A3 B-3 C3 D无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ) Ax2-8x+(-4)2=31 Bx2-8x+(-4)2=1 Cx2+8x+42=1 Dx2-4x+4=-116某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m (1)鸡场的面积能达到180m2吗?能达到200m吗? (2)鸡场的面积能达到210m2吗?点题,板书课题.学生读题找等量关系列方程,思考解方程的依据.学生观察所列方程特点,辨析方程的解与问题的答案.学生尝试描述何为降次及方法,把握方程结构特点,初步体会直接开平方法解一元二次方程.教师组织学生讨论,尝试回答,教师及时肯定并总结学生审读并列方程组织学生讨论,交流然后师生总结学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.开门见山明确本节课内容淡化列方程难度,重点突出解方程方法,关注方程的 解,以及方程的解要受到实际问题的检验,作出取舍.理解降次,初步感知方程结构特点,更好把握直接开平方法,并为配方法的学习作铺垫感知一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版三年级上册第八单元26 手术台就是阵地教案设计
- 2024四川石棉县晟丰农业发展有限责任公司招聘配送员1人笔试参考题库附带答案详解
- 人教部编版八年级下册名著导读 《钢铁是怎样炼成的》:摘抄和做笔记教学设计
- 人教部编版一年级下册古对今教案
- 2024四川新传媒集团有限公司公开招聘6人笔试参考题库附带答案详解
- 2024四川九州电子科技股份有限公司招聘技安管理等岗位3人笔试参考题库附带答案详解
- 人教版九年级化学上册教学设计
- 2024华能四川能源开发有限公司下属单位招聘笔试参考题库附带答案详解
- 人教版四年级上册画角教案及反思
- 学校优良作业评选方案
- 咖啡店店长招聘协议样本
- TCI 324-2024 冠心病患者防治精准护理技术规范
- 港航实务 皮丹丹 教材精讲班课件 51-第2章-2.5.2-铺面基层施工
- 《大数据导论(第2版)》全套教学课件
- 单休企业考勤管理制度
- 广东省深圳市福田区2023-2024学年七年级下学期期末生物学试题(解析版)
- 《Unit7Chinesefestivals》(教案)译林版英语五年级下册
- 合同到期不续约的通知模板
- 小区物业服务投标方案(技术标)
- 电缆敷设及管内穿线施工方案
- 新高考II卷01(含听力)2024年高考英语一轮复习测试卷(考试版)
评论
0/150
提交评论