




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理第一课时教学设计一、学习目标:1了解勾股定理的发现过程,掌握勾股定理的内容,学会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。二、重点、难点1重点:勾股定理的内容及证明。2难点:勾股定理的证明。3难点的突破方法:几何学的产生,源于人们对土地面积的测量需要。在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志。水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积。几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具。本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量关系为:4S+S小正=S大正 4ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4abc2右边S=(a+b)2左边和右边面积相等,即4abc2=(a+b)2化简可证。六、课堂练习1勾股定理的具体内容是: 。2如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;若B=30,则B的对边和斜边: ;三边之间的关系: 。3ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。4根据如图所示,利用面积法证明勾股定理。七、课后练习1已知在RtABC中,B=90,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)2如下表,表中所给的每行的三个数a、b、c,有abc,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。3、4、532+42=525、12、1352+122=1327、24、2572+242=2529、40、4192+402=41219,b、c192+b2=c23在ABC中,BAC=120,AB=AC=cm,一动点P从B向C以每秒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024四川长虹模塑科技有限公司招聘塑压辅助工等岗位1084人笔试参考题库附带答案详解
- 九年级数学下册 第27章 圆27.2 与圆有关的位置关系3切线第2课时 切线长定理与三角形的内切圆教学设计 (新版)华东师大版
- 中考专题之勾画隐圆,破解最值教学设计 2023-2024学年北师大版数学九年级下册
- 2024四川省水电投资经营集团有限公司公开选聘所属公司财务总监5人笔试参考题库附带答案详解
- 专题03 情境补写考点(教案)2025年新高考语文一轮复习考点满分宝典 学案
- 九年级数学上册 第23章 图形的相似23.6 图形与坐标 2图形的交换与坐标教学设计 (新版)华东师大版
- 55018《计算机控制技术(第2版)》于海生版本教学大纲
- 化学九年级上册第1节 构成物质的基本微粒教案设计
- 人教部编版七年级上册第二单元 夏商周时期:早期国家的产生与社会变革第五课 青铜器与甲骨文教学设计
- 人教部编版七年级上册第七课 战国时期的社会变化教学设计
- 东北三省四市教研联合体2025年高考模拟考试(一)地理试题(含答案)
- 2024-2025学年浙教版八年级数学下册期中测试卷 第1~4单元(浙江专用)(含答案)
- 2024-2025学年人教版七年级数学(下)期中试卷(考试范围:第7-9章)(含解析)
- 2025-2030年中国CAE软件行业市场行情监测及发展前景研判报告
- 术前讨论制度课件
- 2025-2030中国工程造价咨询行业市场深度调研及竞争格局与投资研究报告
- 安徽省合肥市2024-2025学年高三下学期第二次教学质量检测地理试题(原卷版+解析版)
- 购物卡采购合同
- 2025年光伏项目劳务分包合同模板
- 2024福建省能源石化集团有限责任公司秋季社会招聘120人笔试参考题库附带答案详解
- 2025年四川省对口招生(农林牧渔类)《农业经营与管理》考试复习题库(含答案)
评论
0/150
提交评论