【全程复习方略】(福建专用)高中数学 10.1随机抽样训练 理 新人教A版 .doc_第1页
【全程复习方略】(福建专用)高中数学 10.1随机抽样训练 理 新人教A版 .doc_第2页
【全程复习方略】(福建专用)高中数学 10.1随机抽样训练 理 新人教A版 .doc_第3页
【全程复习方略】(福建专用)高中数学 10.1随机抽样训练 理 新人教A版 .doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【全程复习方略】(福建专用)2013版高中数学 10.1随机抽样训练 理 新人教a版 (40分钟 80分)一、选择题(每小题5分,共20分)1.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )(a)1 000名运动员是总体 (b)每个运动员是个体(c)抽取的100名运动员是样本 (d)样本容量是1002.(2012锦州模拟)某林场有树苗30 000棵,其中松树苗4 000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )(a)25 (b)30 (c)15 (d)203.(2012新乡模拟)某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号职工在样本中,则样本中还有一个职工的编号是( )(a)19 (b)20 (c)18 (d)214.(2012福州模拟)某校共有学生2 000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )一年级二年级三年级女生373xy男生377370z(a)24 (b)18(c)16 (d)12二、填空题(每小题5分,共15分)5.(预测题)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,在简单随机抽样、系统抽样、分层抽样这三种方法中较合适的抽样方法是_.6.(2012张掖模拟)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,196200号)若第5组抽出的号码为22,则第8组抽出的号码应是_若用分层抽样方法,则40岁以下年龄段应抽取_名7.(2012邵阳模拟)某中学开学后从高一年级的学生中随机抽取80名学生进行家庭情况调查,经过一段时间后,再次从这个年级随机抽取100名学生进行学情调查,发现有20名学生上次被抽到过,估计这个学校高一年级的学生人数为_.三、解答题(每小题15分,共30分)8. (易错题)某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个.从中抽取一个容量为20的样本.请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.9.某工厂平均每天生产某种零件大约10 000件,要求产品检验员每天抽取50个零件检查其质量状况.假设一天的生产时间中生产机器零件的件数是均匀的,请设计一个抽样方案.【探究创新】(15分)已知某校高三文科班学生的化学与物理的水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为a(优秀)、b(良好)、c(及格)三个等级,设x,y分别表示化学成绩与物理成绩例如:表中化学成绩为b等级的共有2018442人,已知x与y均为b等级的概率是0.18.(1)求抽取的学生人数;(2)设在该样本中,化学成绩优秀率是30%,求a,b的值;(3)在物理成绩为c等级的学生中,已知a10,b8,求化学成绩为a等级的人数比c等级的人数少的概率.abca7205b9186ca4bx 人数y答案解析1.【解析】选d.对于这个问题我们研究的是运动员的年龄情况.样本是100个年龄数据,因此应选d.2.【解析】选d.设样本中松树苗的数量为x,则由分层抽样的特点得x=20.3.【解析】选a.系统抽样的特点是“等距”,所以另外一个职工编号是6+(45-32)=19.4.【解析】选c.由在全校学生中任抽1人,抽到二年级女生的概率为0.19知x=2 0000.19=380(人),所以三年级学生人数为2 000(373+377)(380+370)500(人).在三年级抽取人数为6416(人).5.【解析】要研究的总体里各部分情况差异较大,因此用分层抽样.答案:分层抽样6.【解析】由系统抽样知第1组抽出的号码为2,则第8组抽出的号码为25737;若用分层抽样抽取,则40岁以下年龄段应抽取4020名答案:37 20【一题多解】本题还可用以下方法求解:由题意知,第5组抽出的号码为22,而分段间隔为5,则第6组抽取的应为27,第7组抽取的应为32,第8组抽取的号码应为37.由图知40岁以下的人数为100人,则抽取的比例为答案:37 207.【解析】根据抽样的等可能性,设高一年级共有x人,则x=400.答案:4008.【解题指南】要说明每个个体被取到的概率相同,只需计算出用三种抽样方法抽取个体时,每个个体被取到的概率.【解析】(1)简单随机抽样法:可采取抽签法,将160个零件按1160编号,相应地制作1160号的160个号签,把它们放在一起,并搅拌均匀,从中随机抽20个.显然每个个体被抽到的概率为(2)系统抽样法:将160个零件从1至160编上号,按编号顺序分成20组,每组8个.然后在第1组用抽签法随机抽取一个号码,例如它是第k号(1k8),则在其余组中分别抽取第k+8n(n=1,2,3,19)号,此时每个个体被抽到的概率为(3)分层抽样法:按比例分别在一级品、二级品、三级品、等外品中抽取个,个,个,个,每个个体被抽到的概率分别为即都是综上可知,无论采取哪种抽样,总体的每个个体被抽到的概率都是【方法技巧】“逐个抽取”与“一次性抽取”的比较从含有n个个体的总体“逐个抽取”个体与“一次性抽取”个体,对总体的每一个个体来说,被抽取到的概率都是一样的.“逐个抽取”个体与“一次性抽取”个体对于总体中的第一个个体来说,被抽取到的概率是一样的.但是,由于简单随机抽样的定义和特点要求“逐个抽取”,所以尽管“逐个抽取”与“一次性抽取” 对于总体中的每一个个体来说被抽取到的概率是一样的,我们还是应该采用“逐个抽取”.9.【解析】第一步:将一天中生产的机器零件按生产时间将一天分为50个时间段,也就是说,每个时间段大约生产件产品,这样抽样间距就是200.第二步:将一天中生产的机器零件按生产时间进行编号,比如,第一个生产出的零件就是0号,第二个生产出的零件就是1号等等.第三步:从第一个时间段中按照简单随机抽样的方法抽取第一个产品,比如是第k号零件.第四步:顺序抽取得到编号为下面数字的零件:k+200,k+400,k+600,k+9 800这样就得到了容量为50的样本.【探究创新】【解析】(1)由题意可知得n100.故抽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论