山东省东营市河口区实验学校八年级数学下册 19.1.1 变量与函数学案(无答案)(新版)新人教版 (2).doc_第1页
山东省东营市河口区实验学校八年级数学下册 19.1.1 变量与函数学案(无答案)(新版)新人教版 (2).doc_第2页
山东省东营市河口区实验学校八年级数学下册 19.1.1 变量与函数学案(无答案)(新版)新人教版 (2).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

19.1.1变量与函数周次 课时 学生姓名 班级 一、学习目标:1.通过实例理解常量和变量、自变量和函数基本概念; 2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.二、学习重点: 函数的概念三、学习难点:函数的概念四、学习过程: (一)创设情境:在学习与生活中,经常要研究一些数量关系,先看下面的问题问题1 如图是某地一天内的气温变化图看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?(二)探究新知:问题2圆的面积随着半径的增大而增大如果用r表示圆的半径,s表示圆的面积则s与r之间满足下列关系:s_利用这个关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量例如问题1中,刻画气温变化规律的量是时间t和气温t,气温t随着时间t的变化而变化,它们都会取不同的数值像这样在某一变化过程中,可以取不同数值的量,叫做变量上面各个问题中,都出现了两个变量,它们互相依赖,密切相关一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,此时也称y是x的函数表示函数关系的方法通常有三种: (1)解析法,问题2中的s r2,这些表达式称为函数的关系式(2)列表法,(3)图象法,如问题1中的气温曲线问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(三)典型示例:例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是函数?例2 写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长c与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和s与边数n的关系式(四)巩固练习1.举3个日常生活中遇到的函数关系的例子2.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm,它的面积s(cm2)与这边上的高h(cm)的关系式是;(2)若直角三角形中的一个锐角的度数为,则另一个锐角(度)与间的关系式是90 ;3.写出下列函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系;(2)计划购买50元的乒乓球,求所能购买的总数n(个)与单价a(元)的关系课堂小结这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?教后反思:附件1:律师事务所反盗版维权声明附件2:独家资源

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论