交通事故数据.doc_第1页
交通事故数据.doc_第2页
交通事故数据.doc_第3页
交通事故数据.doc_第4页
交通事故数据.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

在飞机着陆中,20世纪80年代末期至90年代初期,人们提出了视景系统(,)概念。采用不同手段和不同综合方法构成的视景系统分为以下几个部分:1)传感器视景系统()。前视传感器实时检测到的驾驶舱外视见景象,可以由单传感器生成或多传感器综合,其视景接近真实世界的自然景象。2)合成视景系统()。由地形数据库存储的地形模型构建的虚拟视景称为合成视景。3)增强视景系统(,-)。传感器视景和合成视景的叠合称为增强视景()。既有实时探测到的自然视景,也有数据库生成的虚拟视景,两者匹配叠合,即利用虚拟视景的深刻轮廓线去增强模糊视景,包括了和两个系统,它们在恶劣的气象条件下可以增强窗外视景的可见性1。随着智能交通运输系统的发展与应用,视觉增强技术在低能见度条件下的车辆安全辅助驾驶系统中得到应用。如美国的科技公司开发了由有红外传感器、显示系统、无线通信系统、等组成的驾驶员视觉增强装置用于烟雾条件下抢险车辆。近年来由于成像雷达传感器相对于前视红外成像传感器具有更好的云雾及恶劣天气穿透能力,国外开始全力发展用于恶劣天气条件下视景增强雷达系统,并且已取得了新的重大进展。美国波音公司与3联合在2002年开发了一套视觉增强系统用于低能见度条件下军用直升飞机降落导航和军用车辆的导航,系统由图像传感器、毫米波雷达、等组成2。在视觉增强系统中图像处理技术是常用的技术手段之一。为探测雾天的能见度,开展了理论研究,提出了一些实用方法。文献3研究了基于车载摄像机的能见度检测方法,用于驾驶安全预警。针对雾天下拍摄图像的退化现象,文献4提出了一种景物影像清晰化的方法,用移动模板对不同深度的场景进行分割,以对模板中的区域进行块重叠直方图均化衡处理。根据图像的灰度分布特性,求出天空区域灰度的最佳近似正态分布,再由这个近似正态分布估计来得到分割天空区域的灰度值分布范围,以增强景物细节信息。文献5则根据图像本身估计出图像退化的物理过程来增强图像。在雾天能见度较差条件下,单视觉传感器获取道路环境图像退化较为严重时,图像增强的效果不一定理想,因此,基于多源信息融合的图像增强得到广泛关注。美国国防高级研究计划局负责实施的战略计算机计划中的几个主要示范系统(如自主式地面战车,自动目标识别系统)都将多种侦察仪器的图像信息融合技术作为重要的研究内容;美国德克萨斯仪器公司研究将红外热图像和微光图像融合,来提高夜战能力。文献6分析了环境和气候等因素对毫米波雷达和红外传感器性能的影响,获得了两类传感器的环境及气候模型。在该基础上,提出了一种基于各传感器性能模型的红外/毫米波复合自动生成算法。文献7采用短波红外摄像机和长波红外摄像机以及彩色摄像机构成多谱图像采集系统,针对多源图像信息融合中图像信息匹配问题,提出了采用几何参数修正的方法。文献8采用车载摄像机、等构建了视觉增强研究平台,研究雾天驾驶员视觉增强方法。低照度视觉增强系统目前技术已非常成熟,其产品已实用化,如林肯领航者汽车安装有“夜眼”()摄像机可在低照度条件下,在汽车处于倒档时工作,即使在近乎黑暗的情况下也能提供车后近距离内的细小影像。视觉增强系统中第二种方法主要是除去挡风玻璃上的雨水和霜、提高汽车前照灯的智能化等,达到增强低能见度、低照度等不利条件下的驾驶员视觉目的9。该方法目前很多技术处于实际运用与不断更新阶段,例如:智能雨刷系统,智能雨刷系统以发光二极管对前挡风玻璃发出光束,当雨滴打在感应区的玻璃上时,光束所反射的光线强度,会因玻璃上的雨量或湿气含量而有所变化,改变雨刷的刷动频率;或透过红外线电子雨量传感器感应雨量的多寡,并随车速的变化自动调整雨刷速度,增进驾驶人的驾驶方便性,让驾驶更有安全性。准确判别前挡风玻璃面积雨量,是智能雨刷系统的关键。针对现有雨量传感器检测前挡风玻璃面积区域有限,文献10采用车载摄像机获取雨天中前挡风玻璃面积序列图像,设定感兴趣区域,利用模板匹配的方法对连续多帧图像进行雨滴识别,从而获取精确雨量信息。2.1.2视觉扩展()视觉扩展是对驾驶员视觉进行补偿,运用视觉等传感器扩展驾驶员视野范围,如福特公司的-156中国安全科学学报 第18卷2008年,采用多个微小的摄像机和3个可切换的视频显示屏为驾驶员提供了前、后视线,方便停车时的操作,提高在拥挤的交通中行驶的安全性。的技术特点包括:1)前向摄像机系统。装在汽车的两侧,提供绕过障碍物的视野。覆盖角可达22,在300的距离上相当于116宽的视场。2)增强的侧面视野。摄像机系统的第二个部分由两台后向摄像机组成,这两台摄像机不间断地提供相邻车道的后向视野。其覆盖范围比传统的后视镜宽广得多。这样,驾驶员在换道前就能对后面驶来的车辆加以监测。这种后向视野事实上没有盲点。后向摄像机装在汽车侧面,和侧视镜差不多。其镜头可以提供一个较广阔的视野,每侧摄像机的覆盖角为49。3)车后全景视图。的后向视野是通过精确设计安装在车后的4个微型摄像机得到加强。4个摄像机呈扇形展开,以4个分开的图像,来捕获车后一个很宽的区域内的路面情况。这些图像被送入一个复杂的计算机程序中进行比较和叠加,然后合成一个无缝的全景视图,总覆盖角可达16011-12。泊车辅助系统(-)也是一种常见的视野扩展系统。在泊车辅助系统中传感器探测前方、侧方、后方的盲点环境信息,包括倒车时后方障碍信息,如相对位置、距离、大小等,以图像显示或声音提示的方式提供给驾驶员。2.1.3显示技术道路环境图像显示和道路环境报警设备是驾驶员和车辆间交互的接口,其设计应具有良好的人因特性。目前车载的信息显示设备主要有两种:低头显示器(-)和抬头显示器(-)。低头显示器主要应用在车载导航系统和多媒体系统中,其设计与应用比较成熟。如福特公司的的仪表板上设有3个视频显示屏,一个中心显示屏和两个侧面附加显示屏。显示的图像可以根据具体情况加以改变,以便为驾驶员提供最重要的信息。抬头显示器多用于汽车安全辅助驾驶显示系统中,可便于驾驶员在汽车高速行驶时,快速浏览屏幕上的道路环境与警示信息,其设计尚处于开发、完善阶段。在国外,文献13在驾驶模拟器上模拟雾天高速公路驾驶环境,通过12名驾驶员的驾驶实验,探讨使用低头显示器和抬头显示器时的驾驶员的工作负荷。文献14通过陌生城市道路环境的道路驾驶实验证明抬头显示器便捷性优于普通的车载显示器,同时研究了基于人体参数的抬头显示器位置设计方法。在国内,文献15进行了汽车视野扩展显示系统设计;文献16介绍了汽车导航及汽车信息显示系统。2.2驾驶环境的机器视觉识别驾驶环境的机器视觉识别是更高一级的汽车安全辅助驾驶技术,通过图像传感器识别道路环境参数并判别行车的安全性,主要包括:车道检测、车辆检测、行人检测、道路标志检测等。2.2.1车道检测目前车道检测多通过道路标线、道路边缘的检测实现,在车道检测中典型的驾驶安全辅助系统有车道偏离报警系统()和转弯减速调节系统。车道偏离报警系统由摄像机、速度传感器、信息处理系统、方向盘调节器、报警系统等组成。车辆一旦有偏离车道的倾向,便会通过指示灯及蜂鸣器向驾驶员报警。当根据驾驶员的转向灯操作断定为有意识地进行车道变更时,便会暂时停止报警。可切断系统开关,但车辆再次起动时系统便会自动开始工作。车道偏离报警系统多采用单目摄像机探测道路标线图像,为增加系统检测道路标线的可靠性,日本汽车研究所中心探索利用双目摄像机和实时差分系统检测运行车辆偏离道路标线情况。在国内为提高不同光线下道路标线的识别精度,文献17运用神经网络方法识别道路标线;为提高道路标线识别的实时性,文献18研究了基于颜色模型的道路标线检测算法和的实现。在没有道路标线或不清晰的道路中,确定车辆安全行车域往往是通过检测道路边缘实现的。文献19提出了一种基于不确定性知识的实时道路理解算法,该算法通过不确定性知识推理来融合多种信息和知识,以满足在复杂道路环境下的鲁棒性要求。转弯减速调节系统可检测转弯车辆经由路面的转弯半径及曲率,将信息通知给驾驶员或相应地自动调节车辆减速20。转弯减速调节系统主要有两种:157第5期初秀民等:基于车载机器视觉的汽车安全技术主动式系统是通过车载传感器,如摄像机、激光、车速等传感器,主动探测前方道路弯道信息;导式系统是通过车载信息接收系统,如接收机,接收车辆当前位置信息通过查询道路电子地图获取前方道路弯道信息或通过无线信号接收器直接接收外部道路诱导系统发布的信号。日本的几家汽车公司在该领域进入深入研究,并取得了一些实用化成果。马自达公司的方案是采用主动式系统。当车辆接近转弯时,系统计算出一个足够安全车速,以便处理转弯,并根据来自路标信息,估计到弯道开始点的距离。如果车速传感器检测证明车速超过估计的安全速度,系统则发出警报信号,如驾驶员未减速,系统将自动操作制动。本田公司与三菱公司使用引导式系统。本田公司的转弯减速调节系统在地图数据警告驾驶员有弯道时,选择合适速度。如需减速,则发出警告信号,道路曲线图形显示在风窗玻璃显示器上。三菱公司的转弯减速调节系统利用车载信号接收器接收从路边发射的逼近拐弯和道路曲线信号,并警告驾驶员减速。如果驾驶员忽视警告,系统将自动地降低车速。文献21分析了汽车在道路曲线行驶时的一些动力学特性,为设计汽车道路曲线预警系统提供技术支持。在国内,文献22利用图像识别技术研究高速公路道路曲线识别,提出了一种有效的基于区域生长和曲线拟合的道路曲线识别算法;文献23等在自动公路系统研究中,利用磁道钉编码传输道路曲线信息。2.2.2车辆检测车辆检测是利用各种传感器探测前方、侧方、后方的车辆的信息,包括:前后方车辆速度、位置以及障碍物的大小位置等。与其相关的汽车驾驶安全辅助支持系统有自适应巡航控制系统(,)、前向碰撞预警系统(, )、横向碰撞预警系统(,),泊车辅助系统。在和中采用77微波雷达或摄像机采集道路前方信息,并融合道路几何线形、电子地图数据作为汽车巡航控制的输入信号或显示给驾驶员。在中采用摄像机、前方探测雷达、侧向探测雷达采集该车前向和侧向信息,并融合道路宽度等数据,作为系统输入数据。在泊车辅助系统中采用超声传感器或雷达探测该车后方与侧方的障碍物信息,并显示给驾驶员。在日本的()、美国的(-)、欧洲的-项目中,泊车辅助系统等均有研究。2.2.3交通标志的探测道路交通标志为重要的道路交通安全附属设施,可向驾驶员提供各种引导和约束信息。驾驶员实时并正确地获取交通标志信息,可保障行车更加安全。在汽车安全辅助驾驶系统中交通标志的探测是通过图像识别系统实现的。戴姆勒克莱斯勒公司目前正开展新一代图像识别系统研究,该系统在道路标志方法上首先对形状进行判断,然后再读取上述形状中的文字和图形信息,以作出最终判断。在难以对标志进行判断时,驾驶员也可利用事先记录的道路标识相关电子地图数据进行识别。宝马公司在()项目研究中,也利用图像识别技术进行了交通标志的研究,此外日本丰田公司也积极进行交通标志自动识别系统的研发。国外,许多研究人员在交通标志图像识别算法研究中进行了多方面的探索。交通标志图像识别包括交通标志定位(即确定感兴趣区域)、分类器设计等几个过程。交通标志与背景的颜色以及交通标志的形状在交通工程标准中有明确的规定,因此,可根据交通标志颜色和形状进行定位研究。文献25利用模板匹配算法确定交通标志位置;由于交通标志种类多,拍摄交通标志图像环境影响因素多,在交通标志模式分类器设计研究中多为非线性分类器,如文献26等利用径向基神经网络结构设计标志模式分类器。在国内,文献28利用数学形态学,提取交通标志形态骨架,并利用匹配算法识别交通标志;文献30在交通标志的识别研究中提出了基于集合变换(即数学形态学和二值有序统计)的交通标志形状几何特征的数值描述方法。文献31运用小波变换提取转弯指示道路标志图像特征信息,进而实现其自动识别。2.2.4行人检测技术车辆辅助驾驶系统中基于计算机视觉的行人检测是指利用安装在运动车辆上的摄像机获取车辆前面的视频信息,然后从视频序列中检测出行人的位置。基于计算机视觉的行人检测系统一般包括分割和目标识别两个模块。分割的目的是快速确定行人可能出现的158中国安全科学学报 第18卷2008年2车辆外部信息的机器视觉辅助驾驶技术人眼的作用能力是有限的,获得通过一系列车辆外部信息的机器视觉辅助驾驶技术可以提高视觉适应性、增加视觉范围、增强视觉理解深度。从车辆操作过程来划分,车辆外部信息的机器视觉辅助驾驶技术的研究包括:驾驶环境的视觉增强与扩展;驾驶环境的机器视觉识别。2.1驾驶环境的视觉增强与扩展及显示2.1.1视觉增强()视觉增强系统是智能交通系统中先进车辆控制技术之一,能够提供在不同气候(雾天,雨天,沙尘)、一天中不同的时间的增强驾驶员视觉。一般有两种增强方法:通过传感器感知系统来监控道路交通环境,处理信息而得到实时道路交通状况,并将相关的视觉信息提供给驾驶员,从而达到智能视觉增强的目的;通过改善驾驶员的视觉环境,提高驾驶员视觉效果。主要是除去挡风玻璃上的雨水和霜、提高汽车前照灯的智能化等,达到增强低能见度、低照度等不利条件下的驾驶员视觉目的。利用人眼的视觉特性,采用、红外传感器、车速传感器、及毫米波雷达等传感器获取道路信息,进行信息处理和融合,提取低能见度、低照度下交通环境的有用信息并剔除噪声,并以图像的形式提供给驾驶员。低能见度视觉增强系统最早应用区域,缩小搜索空间,目前常用的方法是采用立体摄像机或雷达的基于距离的方法,其优点在于速度比较快。目标识别的目的是在中精确检测行人的位置,目前常用的方法是基于统计分类的形状识别方法,其优点在于比较鲁棒。由于它在行人安全方面的巨大应用前景,欧盟从2000年到2005年连续资助了和-项目,开发了两个以计算机视觉为核心的行人检测系统;意大利大学开发的智能车也包括一个行人检测模块;以色列的公司开发了芯片级的行人检测系统;日本本田汽车公司开发了基于红外摄像机的行人检测系统;在国内西安交通大学、清华大学、吉林大学也在该领域做了许多研究工作32-34。3车辆内部信息的机器视觉辅助驾驶技术车辆内部信息的机器视觉辅助驾驶技术是通过车载的视像机判别驾驶员的状态、位置等信息,实施必要的安全保障措施,包括驾驶员视线调节以及驾驶疲劳检测等。3.1视线调节驾驶员的视线调节是使每位驾驶员的眼睛处于同样的相对高度上,保证提供一个对路面和周围车道的无阻碍视野和最好的视见度,从而保障驾驶安全。该技术包括:1)眼位传感器可以测定驾驶员眼睛的位置,然后据此确定、调节座椅的位置。2)电机将座椅自动升降到最佳高度上,为驾驶员提供能够掌握路面情况的最佳视线。3)电机自动调整转向盘、踏板、中央控制台甚至地板高度,提供尽可能舒适的驾驶位置。在一些高档轿车上视线调节系统已经得到应用,如沃尔沃视线调节系统,由位于风窗上饰板内的一个视频摄像机扫描驾驶员的座椅区域以查找一个代表驾驶员脸部的模式,进而对驾驶员脸部进行扫描以确定其眼睛的位置,然后再找出各眼的中心,完成这3步工作时所需要的时间不到1。3.2疲劳与分神检测由于疲劳驾驶是重大交通事故主要原因,国内外研究机构纷纷开展该领域的研究。疲劳的与清醒的驾驶相比,较有特异性的指标是:方向盘的微调,头部前倾,眼睑的眨动甚至闭合。在目前驾驶疲劳检监测系统研究中,多采用车载机器视觉系统监测人体姿态和操作行为信息,判别疲劳状态。在欧洲的-项目中开发了驾驶诊断系统。该系统利用视觉传感器和方向盘操纵力传感器实时获取驾驶员信息,并利用人工智能算法判断驾驶员的状态(清醒、可能打瞌睡、打瞌睡)。当驾驶员处于疲劳状态时,通过声音、光线、振动等刺激驾驶员,使其恢复清醒状态。文献34通过自行开发的专用照相机、脑电图仪和其他仪器来精确测量头部运动、瞳孔直径变化和眨眼频率,用以研究驾驶疲劳问题。研究结果表明:一般情况下人们眼睛闭合的时间在0.120.13之间,驾驶时若眼睛闭合时间达到0.15就很容易发生交通事故。在国内,也有多家研究单位开展驾驶疲劳的研究,文献35利用机器视觉的方法对驾驶员的眼睛特征进行实时跟踪从而判断驾驶员的精神状态。由于驾驶行为可以在一定程度上反映驾驶员的疲劳状态,一些研究人员从驾驶行为的角度研究驾驶疲劳监控。法国从2000年开始已联手研制基于驾驶行为的驾驶员注意力下降监测系统,通过声音或光信号提醒驾驶员。该系统采用的传感器有:视频传感器(不间断地测量并分析汽车与旁侧车道白线间的距离)、方向盘传感器(监控方向盘的活动情况)、刹车传感器(监控脚踏板上的压力状况)等;文献36通过视觉传感器测量驾驶员驾驶时方向盘的运动参数来判别驾驶员的安全因素。4结论驾驶员80%以上信息通过视觉获得,针对驾驶员视觉的不足,开发基于车载机器视觉的汽车安全辅助驾驶系统一直是智能交通的研究热点之一,文中对该领域技术现状进行综述,结论如下:1)分析驾驶操作过程,并对驾驶操作的3个阶段进行描述。2)根据信息获取范围将汽车安全辅助驾驶分为,外部信息的机器视觉与内部信息的机器视觉技术。外部信息的机器视觉技术分为,视觉增强、视野扩展、道路环境理解,内部信息的机器视觉技术分为,视线跟踪与驾驶疲劳监测,综述汽车安全辅助驾驶系统中机器视觉技术的研究现状。3)分析了汽车安全辅助驾驶系统中机器视觉技术当前研究不足,指出低能见度驾驶员视觉增强方法、道路环境理解信息融合以及驾驶疲劳检测等159第5期初秀民等:基于车载机器视觉的汽车安全技术技术需进一步开展研究。由于汽车安全驾驶是一个人车路相互藕合的复杂过程以及各种先进技术的应用成本等问题,目前基于车载机器视觉的汽车安全辅助驾驶系统尚存在以下几个方面的不足:首先,驾驶员视觉增强方面。目前驾驶员视觉系统研究多集中在低照度方面,而低能见度方面研究较少,低能见度道路图像恢复、多源图像融合、基于传感器的道路视景合成、显示器设计理论,以及驾驶员视觉增强系统产品设计等方面均需要开展研究。其次,驾驶环境理解方面。尽管有些基于车道检测和车辆周边信息检测的汽车安全辅助驾驶支持系统技术已经实用化,但如何采用多传感器信息融合、人工智能等提高车道、车辆周边信息感知的准确性与鲁棒性仍需探索;同时交通标志与行人检测汽车安全辅助驾驶支持系统目前尚处于研发中,交通标志与行人动态图像识别算法需完善。第三,驾驶疲劳监测方面。驾驶疲劳有多种表现形态,驾驶室环境光线条件多变,单独采用视觉传感器识别驾驶疲劳效果并不理想,有必要利用信息融合技术提高驾驶疲劳的准确性。5建议与研究展望针对基于车载机器视觉研究不足,随着机器视觉、汽车电子等技术的发展,建议开展以下几方面的研究:1)开展低能见度道路图像清晰度退化机理、图像增强算法与实时实现方法以及基于可见光与红外视觉传感器的道路图像融合技术研究,解决低能见度道路图像增强问题;利用获取道路参数、利用车载毫米波雷达获取前方车辆运动信息、采用虚拟现实技术并结合视觉传感器的信息,实现道路场景的合成技术。同时,开展基于车载机器视觉的道路能见度与雨量识别技术研究,为智能车灯和雨刷提供新的交通环境探测方法途径。2)驾驶模拟器是当前研究驾驶员在回路的汽车安全辅助驾驶系统工效性的主要工具,建议利用驾驶模拟器开展驾驶员视觉模型,为驾驶员视觉增强系统产品设计提供理论基础。同时,开展驾驶员人机交互接口人因特性评价方法研究。3)针对光线不均等机器视觉识别道路不理想的状况,开展低成本的机器视觉与惯性导航融合技术研究,提高车道信息感知如车道偏离检测、弯道检测等的准确性与鲁棒性。近年来,汽车微处理器技术发展迅速,很多芯片可以直接进行图像信息处理,同时汽车测距的毫米波雷达成本也不断降低,开发基于机器视觉与毫米波雷达的低成本车辆周边信息安全辅助驾驶系统如自适应巡航系统、车载行人检测系统等具有广阔的市场前景。4)道路是车辆的车载体,路面的抗滑性影响汽车行驶的安全性。在恶劣天气下路面湿滑、结冰均会导致路面摩擦系数下降,开展路面状况的自主识别,进而主动控制车辆保障恶劣天气下的行车安全。5)随着车路通信技术的发展与应用,利用路侧视觉传感器检测路面状况、交通状况等信息,并发布给驾驶员,将极大地拓展驾驶员感知驾驶环境的空间范围。6)机器视觉是目前检测驶疲劳最有效手段之一,针对驾驶疲劳表现为多种形态,开展基于机器视觉的驾驶员眼睛跟踪以及驾驶行为如转向盘操作行为的跟踪技术研究,融合驾驶员的眼睛状态信息、车辆姿态信息、驾驶行为信息以及驾驶员生理信息判别驾驶疲劳,提高驾驶疲劳判别的可靠性。参考文献1刘群.视景增强雷达系统的发展与展望.现代雷达,2001,23(4):7112周其焕.前视探测和多传感器综合视景系统在民机上的应用.航空电子技术,2002,33(3):153.-.,2006,7(2):201-2124祝培,朱虹,钱学明等.一种有雾天气图像景物影像的清晰化方法.中国图象图形学报,2004,9(1):1241285,. -.,2001,18(10):2 460-2 4676刘盛鹏,方勇.基于变换和的融合算法及其在可见光与红外线图像融合中的应用.红外与毫160中国安全科学学报 第18卷2008年米波学报,2007,26(3):2172217,. -.34,2005:156-1618郝静涛,陈先桥,初秀民.低能见度驾驶员视觉主动增强系统设计.交通与计算机,2006,25(5):589,. .-,2006.06.4,2006:1-1610.,.,.,. -.,2005:204-0911汽车安全新技术/.:/./,2007-11-2712智能车灯/.:/./080202/1/865.,2008-02-0213.-.(541),2006:178-18414 .,.-. 2003.-,2003.10:14-2115.-.,3(-),2003

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论