20120303郑朗(基本初等函数及函数的应用).doc_第1页
20120303郑朗(基本初等函数及函数的应用).doc_第2页
20120303郑朗(基本初等函数及函数的应用).doc_第3页
20120303郑朗(基本初等函数及函数的应用).doc_第4页
20120303郑朗(基本初等函数及函数的应用).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基本初等函数及函数的应用一 教学目标:1. 知识与技能:熟悉三种基本初等函数的概念、性质与图形;掌握函数与方程的联系;能利用函数模型知识解决一些实际问题。2. 过程与方法: 通过对各个概念的精准定义及其函数性质的详细讲解,让学生熟悉三种基本初等函数的概念和性质;在讲解的过程中添加必要的典型例题加深学生对函数及其性质的认知;通过函数模型的构建,特别是运用数形结合的方法,再结合练习,让学生对函数及其运用的理解能力和动手解决问题能力得到实质上的提高。3. 情感与价值: 通过学习与训练,让学生了解三种基本初等函数的必要性和重要性及其应用的趣味性,激发学习的积极性。二 教学重点与难点:教学重点:熟悉和掌握函数的概念及其性质;能运用函数的特性解决问题教学难点:构建函数模型,数形结合解决问题三 学法与教学用具:1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:教辅书,纸,笔四 教学过程:1.指数函数定义:一般地,函数(0且1)叫做指数函数,其中是自变量,函数的定义域为R图像特征与函数性质:图象特征函数性质101101向轴正负方向无限延伸函数的定义域为R图象关于原点和轴不对称非奇非偶函数函数图象都在轴上方函数的值域为R+函数图象都过定点(0,1)=1自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于10,10,1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于10,10,1利用函数的单调性,结合图象还可以看出:(1)在(0且1)值域是(2)若(3)对于指数函数(0且1),总有(4)当1时,若,则;例2:求下列函数的定义域和值域:(1) (2)2.对数函数一般地,我们把函数(0且1)叫做对数函数,其中是自变量,函数的定义域是(0,+)提问:(1)在函数的定义中,为什么要限定0且1(2)为什么对数函数(0且1)的定义域是(0,+)组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解.答:根据对数与指数式的关系,知可化为,由指数的概念,要使有意义,必须规定0且1因为可化为,不管取什么值,由指数函数的性质,0,所以图象的特征函数的性质(1)图象都在轴的右边(1)定义域是(0,+)(2)函数图象都经过(1,0)点(2)1的对数是0(3)从左往右看,当1时,图象逐渐上升,当01时,图象逐渐下降 .(3)当1时,是增函数,当01时,是减函数.(4)当1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0. 当01时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0 .(4)当1时 1,则0 01,0当01时 1,则0 01,0例:1. 已知函数的定义域为-1,1,求函数的定义域2. 已知01, b1, ab1. 比较 3. 幂函数定义:一般地,形如(R)的函数称为幂函数,其中是自变量,是常数.幂函数性质 (1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1)(原因:); (2)0时,幂函数的图象都通过原点,并且在0,+上,是增函数(从左往右看,函数图象逐渐上升). 特别地,当1,1时,(0,1),的图象都在图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?) 当1时,(0,1),的图象都在的图象上方,形状向上凸,越小,上凸的程度越大(你能说出原因吗?) (3)0时,幂函数的图象在区间(0,+)上是减函数. 在第一家限内,当向原点靠近时,图象在轴的右方无限逼近轴正半轴,当慢慢地变大时,图象在轴上方并无限逼近轴的正半轴.例题:1.证明幂函数上是增函数证明:略2利用函数的性质 ,判断下列两个值的大小 (1) (2) (3)解:略4. 方程的根与函数的零点函数零点的概念:对于函数,把使成立的实数叫做函数的零点函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标即:方程有实数根函数的图象与轴有交点函数有零点函数零点的求法:求函数的零点:(代数法)求方程的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点观察下面函数的图象 在区间上_(有/无)零点;_0(或) 在区间上_(有/无)零点;_0(或) 在区间上_(有/无)零点;_0(或)二次函数的零点:二次函数(),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点(),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(),方程无实根,二次函数的图象与轴无交点,二次函数无零点例:求函数f(x)=x2x 6的零点个数解:略5.函数模型的应用例1:某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?略解:设客房日租金每间提高2元,则每天客房出租数为30010,由0,且300100得:030设客房租金总上收入元,则有:=(20+2)(30010) =20(10)2 8000(030)由二次函数性质可知当=10时,=8000.所以当每间客房日租金提高到20102=40元时,客户租金总收入最高,为每天8000元.例2:某公司拟投资万元,有两种获利的可能可供选择:一种是年利率,按单利计算,年后收回本金和利息;另一种是年利率,按每年复利一次计算,年后收回本金和利息哪一种投资更有利?这种投资比另一种投资年可多得利息多少元?参考数据:,分析:可分别根据复利与单利的计算方法,分别计算出本息和,再进行比较,判断优劣【解】本金万元,年利率,按单利计算,年后收回的本息和是万元,本金万元,年利率,按每年复利一次计算,年后收回的本息和是万元,因此,按年利率的复利一次计算要比按年利率的单利计算更有利,年后多得利息万元点评:我国现行的定期储蓄中的自动转存业务是一种类似复利计息的储蓄例3:我国是水资源比较贫乏的国家之一,各地采用价格调控手段以达到节约用水的目的某市用水收费方法是:水费=基本费+超额费+损耗费该市规定:(1)若每户每月用水量不超过最低限量立方米时,只付基本费元和每月的定额损耗费元;(2)若每户每月用水量超过立方米时,除了付基本费和损耗费外,超过部分每立方米付元的超额费;(3)每户每月的损耗费不超过元()求每户月水费(元)与月用水量(立方米)的函数关系;()该市一家庭今年第一季度每月的用水量和支付的费用如下表所示,试分析一、二、三各月份的用水量是否超过最低限量,并求的值解:()由题意,每月用水量为(立方米),支付费用(元),则(),由表知,一、二月份的水费均大于元,故用水量立方米,立方米都大于最低限量立方米,将和分别代入的解析式,得 ,由得,从而 ,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论