勾股定理的应用课件.ppt_第1页
勾股定理的应用课件.ppt_第2页
勾股定理的应用课件.ppt_第3页
勾股定理的应用课件.ppt_第4页
勾股定理的应用课件.ppt_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,试一试,A,B,C,加油哦!,一圆柱体的底面周长为cm,高AB为cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程(精确到.cm),想一想,A,B,C,B,C,A,例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?说明理由。,2米,2.3米,O,C,D,分析,H,2米,2.3米,由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图所示,点D在离厂门中线0.8米处,且CDAB,与地面交于H,解:,CD,CH0.62.32.9(米)2.5(米).,因此高度上有0.4米的余量,所以卡车能通过厂门,在RtOCD中,由勾股定理得,0.6米,,2米,2.3米,OC1/2x2=1米(大门宽度一半),OD1/2x1.6=0.8米(卡车宽度一半),轻松一下,练一练,如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离,A,小结,、立体图形中路线最短的问题,往往是把立体图形展开,得到平面图形根据“两点之间,线段最短”确定行走路线,根据勾股定理计算出最短距离、在解决实际问题时,首先要画出适当的示意图,将实际问题抽象为数学问题,并构建直角三角形模型,再运用勾股定理解决实际问题3、数学来源于生活,又服务与生活。,应用勾股定理解决实际问题的一般思路:,布置作业:,书面作业:教科书页习题.的、实践探索:请同学们收集日常生活中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论