




已阅读5页,还剩108页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,二次函数复习课件,一、二次函数的定义,定义:一般地,形如y=axbxc(a、b、c是常数,a0)的函数叫做_.定义要点:a0最高次数为2代数式一定是整式练习:1、y=-x,y=2x-2/x,y=100-5x,y=3x-2x+5,其中是二次函数的有_个。,2.当m_时,函数y=(m+1)-2+1是二次函数?,3、下列函数中哪些是一次函数,哪些是二次函数?,巩固一下吧!,1,函数(其中a、b、c为常数),当a、b、c满足什么条件时,(1)它是二次函数;(2)它是一次函数;(3)它是正比例函数;,当时,是二次函数;,当时,是一次函数;,当时,是正比例函数;,驶向胜利的彼岸,考考你,驶向胜利的彼岸,2,函数当m取何值时,,(1)它是二次函数?(2)它是反比例函数?,(1)若是二次函数,则且当时,是二次函数。,(2)若是反比例函数,则且当时,是反比例函数。,小结:,二、二次函数的图象及性质,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0,开口向上,a0当时,y=0当时,y0,x3,x=-2或x=3,-2x0向下ao负半轴c0,过原点c=0.,-与1比较,-与-1比较,与x轴交点个数,令x=1,看纵坐标,令x=-1,看纵坐标,令x=2,看纵坐标,令x=-2,看纵坐标,四、有关a,b,c及b2-4ac符号的确定,快速回答:,抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,o,y,抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,快速回答:,抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,快速回答:,抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,快速回答:,抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,快速回答:,典型例题1.如图,是抛物线y=ax2+bx+c的图像,则a0;b0;c0;a+b+c0;a-b+c0;b2-4ac0;2a-b0;,=,由形定数,典型例题2.已知a0,c0,那么抛物线y=ax2+bx+c的顶点在(),A.第一象限B.第二象限C.第三象限D.第四象限,A,由数定形,1.(河北省)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图像大致为(),B,2.(山西省)二次函数y=x2+bx+c的图像如图所示,则函数值y0时,对应的x取值范围是.,-3x1,.,-3,-3,点击中考:,3、已知二次函数y=ax2+bx+c的图像如图所示,下列结论:a+b+c0,a-b+c0;abc0;b=2a中正确个数为()A.4个B.3个C.2个D.1个,A,4、无论m为任何实数,二次函数y=x2-(2-m)x+m的图像总是过点()A.(1,3)B.(1,0)C.(-1,3)D.(-1,0),C,当x=1时,y=a+b+c,当x=-1时,y=a-b+c,a0,x=,=-1,D,5.(安徽)二次函数y=ax2+bx+c的图像如图,则下列a、b、c间的关系判断正确的是()A.ab0D.a-b+c0的解为()A.xB.xC.xD.x,D,a0,b0,c0,a0,0时,抛物线y=ax2+bx+c与x轴有两个不相同的交点,一元二次方程ax2+bx+c=0有两个不相等的实数根x1、x2(x1x2时,y0,即ax2+bx+c0;当x1xx2时,,即ax2+bx+c0;当xx2时,y0,即ax2+bx+c0,即ax2+bx+c0;当x=x1=x2时,y=0;无论x取任何实数,都不可能有ax2+bx+c0,4、当a0.,y0,5、当a0,0时,抛物线y=ax2+bx+c与x轴无交点,即全部图象在x轴的下方,一元二次方程ax2+bx+c=0无实数根,无论x取何值,都有y0.,y0,b-4ac0,-3,1,6,(-1,8),-1,练习,3、(1)如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=,此时抛物线y=x2-2x+m与x轴有个交点.,(2)已知抛物线y=x28x+c的顶点在x轴上,则c=.,1,1,16,(3)一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是.,(-2、0)(5/3、0),4.如图,抛物线y=ax2+bx+c的对称轴是直线x=-1,由图象知,关于x的方程ax2+bx+c=0的两个根分别是x1=1.3,x2=,5.已知抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围(),-3.3,B,6.根据下列表格的对应值:判断方程ax2+bx+c=0(a0,a,b,c为常数)一个解x的范围是()A3X3.23B3.23X3.24C3.24X3.25D3.25X3.26,C,(1).用描点法作二次函数y=x2+2x-10的图象;,7、利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.解法1:,(3).观察估计抛物线y=x2+2x-10和直线y=3的交点的横坐标;,由图象可知,它们有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之间,分别约为-4.7和2.7(可将单位长再十等分,借助计算器确定其近似值).,(4).确定方程x2+2x-10=3的解;,由此可知,方程x2+2x-10=3的近似根为:x1-4.7,x22.7.,(2).作直线y=3;,(1).原方程可变形为x2+2x-13=0;,利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.,(3).观察估计抛物线y=x2+2x-13和x轴的交点的横坐标;,由图象可知,它们有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之间,分别约为-4.7和2.7(可将单位长再十等分,借助计算器确定其近似值).,(4).确定方程x2+2x-10=3的解;,由此可知,方程x2+2x-10=3的近似根为:x1-4.7,x22.7.,(2).用描点法作二次函数y=x2+2x-13的图象;,解法2,1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.,解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5)所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5展开成一般式即可.,七、二次函数基础知识的综合运用,2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.,分析:,(1)由a+b+c=0可知,原抛物线的图象经过(1,0),(2)新抛物线向右平移5个单位,再向上平移4个单位即得原抛物线,答案:y=-x2+6x-5,3、如图,已知抛物线y=ax+bx+3(a0)与x轴交于点A(1,0)和点B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由(4)如图,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标,3、如图,已知抛物线y=ax+bx+3(a0)与x轴交于点A(1,0)和点B(3,0),与y轴交于点C(1)求抛物线的解析式;,(2)在(1)中抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.,Q,(1,0),(-3,0),(0,3),y=-x-2x+3,Q(-1,2),(3)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由,以M为圆心,MC为半径画弧,与对称轴有两交点;以C为圆心,MC为半径画弧,与对称轴有一个交点(MC为腰)。作MC的垂直平分线与对称轴有一个交点(MC为底边)。,(1,0),(-3,0),(0,3),(-1,0),(4)如图,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标,E,F,(1,0),(0,3),(-3,0),(m,-m-2m+3),八、二次函数在实际生活中的应用:,同学们,今天就让我们一起去体会生活中的数学给我们带来的乐趣吧!,(一)何时获得最大利润?,问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,来到商场,解:设每件涨价为x元时获得的总利润为y元.,y=(60-40+x)(300-10 x)=(20+x)(300-10 x)=-10 x2+100 x+6000=-10(x2-10 x)+6000=-10(x-5)2-25+6000=-10(x-5)2+6250,当x=5时,y的最大值是6250.,定价:60+5=65(元),(0x30),怎样确定x的取值范围,解:设每件降价x元时的总利润为y元.,y=(60-40-x)(300+20 x)=(20-x)(300+20 x)=-20 x2+100 x+6000=-20(x2-5x-300)=-20(x-2.5)2+6125(0x20)所以定价为60-2.5=57.5时利润最大,最大值为6125元.,答:综合以上两种情况,定价为65元时可获得最大利润为6250元.,由(2)(3)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,怎样确定x的取值范围,(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。特别注意:若顶点横坐标在自变量的取值范围内,则顶点纵坐标就是最值;若顶点横坐标不在自变量的取值范围内,则要根据二次函数的增减性来确定最值。,解这类题目的一般步骤,某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?,解:设售价提高x元时,半月内获得的利润为y元.则y=(x+30-20)(400-20 x)=-20 x2+200 x+4000=-20(x-5)2+4500当x=5时,y最大=4500答:当售价提高5元时,半月内可获最大利润4500元,我来当老板,1、星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围,(二)面积最大问题:,来到农场,(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?并求出这个最大值(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围答案:(1)y302x(6x15)(2)当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃面积最大,最大值为112.5平方米(3)6x11,2、(1)请用长20米的篱笆设计一个矩形的菜园。,(2)怎样设计才能使矩形菜园的面积最大?,(04.,(5)投篮与二次函数,来到操场,1、一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。,问此球能否投中?,3米,8米,4米,4米,0,x,y,如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:,(0x8),(0x8),篮圈中心距离地面3米,此球不能投中,若假设出手的角度和力度都不变,则如何才能使此球命中?,(1)跳得高一点,(2)向前平移一点,(4,4),(8,3),在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?,0123456789,(8,3),(5,4),(4,4),0123456789,在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?,(,),(0,1.6),求k的值,所示的直角坐标系中,铅球的运行路线近似为抛物,线,求铅球的落点与丁丁的距离,一个1.5m的小朋友跑到离原点6米的地方(如图),他会受到伤害吗?,来到操场,求k的值,解:,1.5,所以,这个小朋友不会受到伤害。,B,3、如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。,来到操场,3、如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川铁道职业学院《塑料加工技术》2023-2024学年第二学期期末试卷
- 山西财经大学《针灸医籍选》2023-2024学年第二学期期末试卷
- 武夷山职业学院《医学科研方法入门及设计》2023-2024学年第二学期期末试卷
- 浙江纺织服装职业技术学院《中医内科学及研究》2023-2024学年第一学期期末试卷
- 四川省通江县2024-2025学年初三下学期5月模拟考试生物试题试卷含解析
- 四川省绵阳富乐国际2025年中考模拟考试化学试题理工类试卷含解析
- 唐山市迁安市2025年五下数学期末达标测试试题含答案
- 四川省绵阳第五中学2025年中考模拟最后十套:化学试题(七)考前提分仿真卷含解析
- 浙江警官职业学院《电工电子技术(下)》2023-2024学年第二学期期末试卷
- 潍坊医学院《工程项目经济管理与建筑法规》2023-2024学年第二学期期末试卷
- GB/T 788-1999图书和杂志开本及其幅面尺寸
- GB/T 756-2010旋转电机圆柱形轴伸
- GB/T 6172.1-2000六角薄螺母
- GB/T 19189-2011压力容器用调质高强度钢板
- 公司合格供应商清单
- GB/T 13007-2011离心泵效率
- 2022年物流仓储行业REITs研究
- 政治学基础课件全部终稿
- 朱兰质量手册课件
- 小猪佩奇Peppa-Pig第一季1-2集英文台词
- 一园青菜成了精-课件
评论
0/150
提交评论