




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.4离散型随机变量及其分布列最新考纲考情考向分析1.理解取有限个值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列2.了解超几何分布,并能进行简单的应用.以理解离散型随机变量及其分布列的概念为主,经常以频率分布直方图为载体,结合频率与概率,考查离散型随机变量、离散型随机变量分布列的求法在高考中以解答题的形式进行考查,难度多为中低档.1离散型随机变量的分布列(1)将随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个随机变量(2)离散型随机变量:随机变量的取值能够一一列举出来,这样的随机变量称为离散型随机变量(3)设离散型随机变量X的取值为a1,a2,随机变量X取ai的概率为pi(i1,2,),记作:P(Xai)pi(i1,2,),或把上式列表:Xaia1a2P(Xai)p1p2称为离散型随机变量X的分布列(4)性质:pi0,i1,2,;p1p21.2超几何分布一般地,设有N件产品,其中有M(MN)件次品从中任取n (nN)件产品,用X表示取出的n件产品中次品的件数,那么P(Xk) (其中k为非负整数)如果一个随机变量的分布列由上式确定,则称X服从参数为N,M,n的超几何分布题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量()(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象()(3)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布()(4)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.()(5)离散型随机变量的各个可能值表示的事件是彼此互斥的()题组二教材改编2设随机变量X的分布列如下:X12345Pp则p为()A. B.C. D.答案C解析由分布列的性质知,p1,p1.3有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X的所有可能取值是_答案0,1,2,3解析因为次品共有3件,所以在取到合格品之前取到次品数为0,1,2,3.4设随机变量X的分布列为X1234Pm则P(|X3|1)_.答案解析由m1,解得m,P(|X3|1)P(X2)P(X4).题组三易错自纠5袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是()A至少取到1个白球 B至多取到1个白球C取到白球的个数 D取到的球的个数答案C解析选项A,B表述的都是随机事件;选项D是确定的值2,并不随机;选项C是随机变量,可能取值为0,1,2.6随机变量X等可能取值1,2,3,n,如果P(X4)0.3,则n_.答案10解析由P(X4)P(X1)P(X2)P(X3)0.3,得n10.7一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X4)的值为_答案解析由题意知取出的3个球必为2个旧球、1个新球,故P(X4).题型一离散型随机变量的分布列的性质1离散型随机变量X的概率分布规律为P(Xn)(n1,2,3,4),其中a是常数,则P的值为()A. B. C. D.答案D解析P(Xn)(n1,2,3,4),1,a,PP(X1)P(X2).2设离散型随机变量X的分布列为X01234P0.20.10.10.3m求2X1的分布列解由分布列的性质知,020.10.10.3m1,得m0.3.列表为X012342X113579从而2X1的分布列为2X113579P0.20.10.10.30.3引申探究1若题2中条件不变,求随机变量|X1|的分布列解由题2知m0.3,列表为X01234|X1|10123P(1)P(X0)P(X2)0.20.10.3,P(0)P(X1)0.1,P(2)P(X3)0.3,P(3)P(X4)0.3.故|X1|的分布列为0123P0.10.30.30.32.若题2中条件不变,求随机变量X2的分布列解依题意知的值为0,1,4,9,16.列表为X01234X2014916从而X2的分布列为014916P0.20.10.10.30.3思维升华 (1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式题型二离散型随机变量的分布列的求法命题点1与排列、组合有关的分布列的求法典例 (2017山东改编)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列解(1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M).(2)由题意知,X可取的值为0,1,2,3,4,则P(X0),P(X1),P(X2),P(X3),P(X4).因此X的分布列为X01234P命题点2与互斥事件有关的分布列的求法典例 已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列解(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A).(2)X的可能取值为200,300,400.P(X200),P(X300),P(X400)1P(X200)P(X300)1.故X的分布列为X200300400P命题点3与独立事件(或独立重复试验)有关的分布列的求法典例 设某人有5发子弹,他向某一目标射击时,每发子弹命中目标的概率为.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完(1)求他前两发子弹只命中一发的概率;(2)求他所耗用的子弹数X的分布列解记“第k发子弹命中目标”为事件Ak,则A1,A2,A3,A4,A5相互独立,且P(Ak),P(k),k1,2,3,4,5.(1)方法一他前两发子弹只命中一发的概率为P(A12)P(1A2)P(A1)P(2)P(1)P(A2).方法二由独立重复试验的概率计算公式知,他前两发子弹只命中一发的概率为PC.(2)X的所有可能值为2,3,4,5.P(X2)P(A1A2)P(1 2),P(X3)P(A12 3)P(1A2A3)22,P(X4)P(A12A3A4)P(1A23 4)33,P(X5)P(A12A34)P(1A23A4)2222.故X的分布列为X2345P思维升华 求离散型随机变量X的分布列的步骤(1)理解X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X的分布列求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识跟踪训练 (2017湖北部分重点中学联考)连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1a2ak6,则称k为你的幸运数字(1)求你的幸运数字为3的概率;(2)若k1,则你的得分为6分;若k2,则你的得分为4分;若k3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分的分布列解(1)设“连续抛掷3次骰子,和为6”为事件A,则它包含事件A1,A2,A3,其中A1:三次恰好均为2;A2:三次中恰好为1,2,3各一次;A3:三次中有两次均为1,一次为4.A1,A2,A3为互斥事件,则P(A)P(A1)P(A2)P(A3)C3CCCC2.(2)由已知得的可能取值为6,4,2,0,P(6),P(4)22C,P(2),P(0)1.故的分布列为6420P题型三超几何分布典例 (2018济南模拟)某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列解(1)设事件A:选派的3人中恰有2人会法语,则P(A).(2)依题意知,X服从超几何分布,X的可能取值为0,1,2,3,P(X0),P(X1),P(X2),P(X3),X的分布列为X0123P思维升华 (1)超几何分布的两个特点超几何分布是不放回抽样问题;随机变量为抽到的某类个体的个数(2)超几何分布的应用条件两类不同的物品(或人、事);已知各类对象的个数;从中抽取若干个个体跟踪训练 PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物根据现行国家标准GB30952012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标从某自然保护区2017年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立方米)25,35)35,45)45,55)55,65)65,75)75,85)频数311113(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列解(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A).(2)依据条件知,服从超几何分布,其中N10,M3,n3,且随机变量的可能取值为0,1,2,3.P(k)(k0,1,2,3)P(0), P(1),P(2), P(3).故的分布列为0123P离散型随机变量的分布列典例 某射手有5发子弹,射击一次命中的概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数的分布列错解展示:现场纠错解由题意知的取值为1,2,3,4,5,P(1)0.9,P(2)0.10.90.09,P(3)0.10.10.90.009,P(4)0.130.90.000 9,P(5)0.140.000 1.的分布列为12345P0.90.090.0090.000 90.000 1纠错心得(1)随机变量的分布列,要弄清变量的取值,还要清楚变量的每个取值对应的事件及其概率(2)验证随机变量的概率和是否为1.1(2017武汉江夏区模拟)若随机变量的分布列如下:210123P0.10.20.20.30.10.1则当P(x)0.8时,实数x的取值范围是()Ax2 B1x2C1x2 D1x2答案C解析由离散型随机变量的分布列知P(1)0.1,P(0)0.3,P(1)0.5,P(2)0.8,则当P(x)0.8时,实数x的取值范围是1x2.2(2017邯郸模拟)从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数,则P(1)等于()A. B. C. D.答案D解析P(1)1P(2)1.3设X是一个离散型随机变量,其分布列为X101P23qq2则q等于()A1 B.C. D.答案C解析23qq21,q23q0,解得q.又由题意知0q28,且nN),其中女校友6位,组委会对这n位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”(1)若随机选出的2位校友代表为“最佳组合”的概率不小于,求n的最大值;(2)当n12时,设选出的2位校友代表中女校友人数为X,求随机变量X的分布列解(1)由题意可知,所选2人为“最佳组合”的概率为,则.化简得n225n1440,解得9n16,故n的最大值为16.(2)由题意可得,X的可能取值为0,1,2.则P(X0),P(X1),P(X2),所以X的分布列为X012P15设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1,则随机变量的分布列是_答案01P解析的可能取值为0,1,.P(0),P().P(1)1P(0)P()1.16盒内有大小相同的9个球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水产品原料绿色采购-全面剖析
- 时间标记在直播中的应用-全面剖析
- 万以内加减混合两步运算单元测试习题带答案
- 5G环境下Android性能提升-全面剖析
- 管线平衡施工方案
- 自闭症社交技能评估系统企业制定与实施新质生产力战略研究报告
- 管理采访心得体会
- 农村生活污水处理解决方案企业制定与实施新质生产力战略研究报告
- 语言培训AI应用行业跨境出海战略研究报告
- 运动装备个性化图案定制服务行业跨境出海战略研究报告
- 【生物】人的生殖课件-+2024-2025学年人教版生物七年级下册
- 健康日用品设计与研发趋势
- 【化学】常见的盐(第1课时)-2024-2025学年九年级化学下册(人教版2024)
- 《罗秀米粉加工技术规程》 编制说明
- 2024年江苏省无锡市中考英语试卷
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 充电桩安全巡查记录表
- 《公路工程现浇泡沫聚合土应用技术规程》
- 2025届云南省民族大学附属中学高三(最后冲刺)数学试卷含解析
- 品管圈PDCA获奖案例-新生儿科运用PDCA循环缩短早产儿完全经口喂养过渡时间成果汇报
- 河流沿岸护栏安装工程协议
评论
0/150
提交评论