河南省南阳市2019届高三数学上学期期中试题文(含解析).docx_第1页
河南省南阳市2019届高三数学上学期期中试题文(含解析).docx_第2页
河南省南阳市2019届高三数学上学期期中试题文(含解析).docx_第3页
河南省南阳市2019届高三数学上学期期中试题文(含解析).docx_第4页
河南省南阳市2019届高三数学上学期期中试题文(含解析).docx_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省南阳市2019届高三上学期期中考试数学文试卷一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合AxN|x3,Bx|x2+6x160,则AB()A. x|8x2 B. 0,1 C. 1 D. 0,1,2【答案】B【解析】【分析】化简集合A、B,求出AB即可【详解】集合AxN|x30,1,2,3,Bx|x2+6x160x|8x2,AB0,1故选:B【点睛】本题考查了集合的化简与运算问题,是基础题目2.复数的实部和虚部相等,则实数b的值为()A. 1 B. C. D. 0【答案】D【解析】【分析】利用复数代数形式的乘除运算化简,再由已知列式求得b值【详解】因为:,且复数的实部和虚部相等,b0故选:D【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题3.已知向量若,则 .【答案】【解析】试题分析:由题意得,因为,解得考点:向量的数量积的运算4.下列说法正确的是()A. 命题“若x21,则x1”的否命题是“若x21,则x1”B. 命题“”的否定是“xR,x2x0”C. “yf(x)在x0处有极值”是“f(x0)0”的充要条件D. 命题“若函数f(x)x2ax+1有零点,则“a2或a2”的逆否命题为真命题【答案】D【解析】【分析】对于A,根据否命题的概念可得到结论;对于B特称命题的否定是全称命题;C,根据极值点的概念判断即可;D,二次函数在R上有零点,即判别式大于等于0即可,可得到正误.【详解】对于A,命题“若x21,则x1”的否命题是“若x21,则x1”,否命题既否条件又否结论,故命题不正确;对于B,命题“”的否定是“xR,x2x0”故命题错误;对于C,“yf(x)在x0处有极值”,则“f(x0)0”,反之,“f(x0)0”不一定有“yf(x)在x0处有极值”;对于D,命题“若函数f(x)x2ax+1有零点,则“a2或a2”的逆否命题和原命题的真假性相同,原命题f(x)x2ax+1有零点,只需要判别式大于等于0,解得a的范围即a2或a2,是正确的,故逆否命题也是正确的。故答案为:D.【点睛】这个题目考查了命题的真假性的判断,涉及到命题的否定和否命题的写法,否命题既否结论又否条件,命题的否定只否结论;特称命题的否定是全称命题,需要换量词,否结论,不变条件.5.已知O为坐标原点,点M的坐标为(2,1),点N的坐标满足,则的最大值为()A. 2 B. 1 C. 0 D. 1【答案】A【解析】【分析】根据题意可得,2xy,令Z2xy,做出不等式组所表示的平面区域,做直线l0:2xy0,然后把直线l0向可行域内平移,结合图象可判断取得最大值时的位置【详解】根据题意可得,2xy,令Z2xy做出不等式组所表示的平面区域,如图所示的ABC阴影部分:做直线l0:2xy0,然后把直线l0向可行域内平移,到点A时Z最大,而由 可得A(1,0),此时Zmax2故选:A【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域(2)考虑目标函数的几何意义,将目标函数进行变形常见的类型有截距型(型)、斜率型(型)和距离型(型)(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解(4)求最值:将最优解代入目标函数即可求出最大值或最小值。6.函数的图象大致是( )【答案】A【解析】试题分析:解:因为所以,函数是偶函数,其图象关于轴对称;应排除B、D又因为,当时,故选A.考点:1、函数的奇偶性;2、 正弦函数的性质;3、对数函数的性质量.7.设,则( )A. B. C. D. 【答案】C【解析】试题分析:因为,所以考点:1对数;2大小比较8.已知正项等比数列an的公比为2,若aman4a22,则的最小值等于()A. B. C. D. 【答案】A【解析】【分析】根据等比数列的性质求出m+n6,由乘“1”法求出代数式的最小值即可【详解】正项等比数列an的公比为2,若aman4a22,故amana2a22n22m2=4,故m+n6,,故 当且仅当即m2n时“”成立,故选:A【点睛】本题考查了等比数列的性质,考查基本不等式的性质以及乘“1”法的应用,是一道中档题在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.函数f(x)Asin(x+)(其中A0,0,|)的图象如图所示,为了得到g(x)Acosx的图象,只需把yf(x)的图象上所有的点()A. 向右平移个单位长度 B. 向左平移个单位长度C. 向右平移个单位长度 D. 向左平移个单位长度【答案】B【解析】【分析】由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得f(x)的解析式,再利用函数yAsin(x+)的图象变换规律,得出结论【详解】根据函数f(x)Asin(x+)(其中A0,0,|)的图象,可得A1, ,2再根据五点法作图可得2+,求得,函数f(x)sin(2x+)故把yf(x)的图象上所有的点向左平移个单位长度,可得ysin(2x+)cos2xg(x)的图象.故选:B【点睛】确定yAsin(x)b(A0,0)的步骤和方法:(1)求A,b,确定函数的最大值M和最小值m,则A,b;(2)求,确定函数的最小正周期T,则可得;(3)求,常用的方法有:代入法:把图象上的一个已知点代入(此时A,b已知)或代入图象与直线yb的交点求解(此时要注意交点在上升区间上还是在下降区间上)特殊点法:确定值时,往往以寻找“最值点”为突破口具体如下:“最大值点”(即图象的“峰点”)时x;“最小值点”(即图象的“谷点”)时x.10.已知ABC的外接圆半径为2,D为该圆上一点,且,则ABC的面积的最大值为()A. 4 B. 3 C. 4 D. 3【答案】C【解析】【分析】利用向量关系,判断四边形的形状,然后求解三角形的面积的最大值即可【详解】由知,ABDC 为平行四边形,又A,B,C,D 四点共圆,ABDC 为矩形,即BC 为圆的直径,设h为三角形ABC的高,以BC为底,ABC的面积;此时ABAC,ABC的面积取得最大值故选C.【点睛】本题考查向量的几何中的应用,考查转化思想以及计算能力11.设点P,Q分别是曲线yxex(e是自然对数的底数)和直线yx+3上的动点,则P,Q两点间距离的最小值为()A. B. C. D. 【答案】B【解析】【分析】对曲线yxex进行求导,求出点P的坐标,分析知道,过点P直线与直线yx+2平行且与曲线相切于点P,从而求出P点坐标,根据点到直线的距离进行求解即可【详解】点P是曲线yxex上的任意一点,和直线yx+3上的动点Q,求P,Q两点间的距离的最小值,就是求出曲线yxex上与直线yx+3平行的切线与直线yx+3之间的距离由y(1x)ex,令y(1x)ex1,解得x0,当x0,y0时,点P(0,0),P,Q两点间的距离的最小值,即为点P(0,0)到直线yx+3的距离,dmin.故选:B.【点睛】此题主要考查导数研究曲线上某点的切线方程以及点到直线的距离公式,利用了导数与斜率的关系,这是高考常考的知识点,是基础题12.已知函数是定义在上的偶函数,当时,则函数的零点个数为( )个A. B. C. D. 【答案】B【解析】函数的零点个数就是 图象交点个数,函数是定义在上的偶函数,当时,在同一坐标系画出函数的图象如图所示:由图可得:函数的图象与直线有个交点,函数的零点个数为,故选B.【方法点睛】函数零点个数的三种判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间上是连续不断的曲线,且,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题(本大题共4小题,每小题5分,共20分)13.在ABC中,若sinA:sinB:sinC3:4:6,则cosB_【答案】 【解析】【分析】根据正弦定理得到边长之比,设出边长,再由余弦定理得到角B的余弦值.【详解】根据正弦定理得到sinA:sinB:sinC3:4:6=a:b:c,设 由余弦定理得到.故答案为:.【点睛】这个题目考查了正弦定理实现边角互化,以及余弦定理解三角形的应用;在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.14.若向量、两两所成的角相等,且、,则_.【答案】或【解析】因为向量、两两所成的角相等,所以向量、两两所成的角为 或0因此 或15.设数列满足,则的值为 .【答案】【解析】试题分析:,因此数列为首项为1,公差为1的等差数列,即,因此考点:数列通项,裂项相消法求和16.将边长为2的等边ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是yf(x),关于函数yf(x)有下列说法:f(x)的值域为0,2;f(x)f(4)f(2018);f(x)是周期函数且周期为6;滚动后,当顶点A第一次落在x轴上时,f(x)的图象与x轴所围成的图形的面积为其中正确命题的序号是_【答案】【解析】【分析】先根据题意画出顶点P(x,y)的轨迹,它的轨迹是一段一段的圆弧组成的图形从图形中可以看出,关于函数yf(x)的说法的正确性【详解】根据题意画出顶点P(x,y)的轨迹,如图所示,轨迹是一段一段的圆弧组成的图形,是以三角形边长为半径的圆上的圆弧,从图形中可以看出,关于函数yf(x)的有下列说法:f(x)的值域为0,2,正确;f(x)是周期函数,周期为6,正确;由于f(x)的最大值为2,(2018)f(2)f(4),故不正确;滚动后,当顶点A第一次落在x轴上时,的图象与x轴所围成的面积为f(x)的图象在区间0,6上与x轴所围成的图形的面积,其大小为一个正三角形和二段扇形的面积和,其值为 故正确,故答案为:【点睛】本题主要考查命题的真假判断与应用、函数单调性的应用、函数奇偶性的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知数列an满足a1=,an+1=3an-1(nN*).(1)若数列bn满足bn=an-,求证:bn是等比数列;(2)求数列an的前n项和Sn. 【答案】(1)见解析;(2)。【解析】【试题分析】(1)先依据题设得到an+1=3(nN*),从而有bn+1=3bn,b1=a1-=1,然后运用等比数列的定义分析推证;(2)先借助(1)的结论及题设条件求出Sn=30+3+3n-1+,然后运用等比数列的前n项和求解.解:(1) 由题可知an+1=3(nN*),从而有bn+1=3bn,b1=a1-=1,所以bn是以1为首项,3为公比的等比数列.(2) 由第1问知bn=3n-1,从而an=3n-1+,有Sn=30+3+3n-1+=30+31+32+3n-1+n=.18.已知在ABC中,角A、B、C的对边分别是a、b、c,且2sin2A+3cos(B+C)0(1)求角A的大小;(2)若ABC的面积S,求sinB+sinC的值【答案】(1); (2).【解析】【分析】(1)根据同角三角函数关系得到2(1cos2A)3cosA=0,解出角A的余弦值,进而得到角A;(2)根据三角形的面积公式和余弦定理得到a=,再结合正弦定理得到最终结果.【详解】(1)在ABC中2sin2A+3cos(B+C)=0,2(1cos2A)3cosA=0,解得cosA=,或cosA=2(舍去),0A,A=;(2)ABC的面积S=bcsinA=bc=5,bc=20,再由c=4可得b=5,故b+c=9,由余弦定理可得:a2=b2+c22bccosA=(b+c)23bc=21,a= , sinB+sinCsinB+sinC的值是.【点睛】这个题目考查了同角三角函数的化简求值,考查了三角形面积公式和正余弦定理的应用,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19.已知数列an的前n项和Sn3n28n,bn是等差数列,且anbnbn1.(1)求数列bn的通项公式;(2)令,求数列cn的前n项和Tn.【答案】(1),;(2)【解析】试题分析:(1)首先根据求出的通项公式,设数列的公差为,列出和的方程组,解出即可;(2)根据(1)可得数列的通项公式,利用错位相减法求得结果.试题解析:(1)由题意知,当时,.当时,符合上式,所以.设数列的公差为,由即,可解得,所以.(2)由(1)知,又,得,.两式作差,得 ,所以.点睛:本题主要考查了等差数列,等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.20.已知函数f(x)x3ax2+bx+c(a,b,cR)(1)若函数f(x)在x1和x3处取得极值,试求a,b的值;(2)在(1)的条件下,当x2,6时,f(x)2|c|恒成立,求c的取值范围【答案】(1); (2)(,18)(54,).【解析】【分析】(1)根据函数的极值的概念得到方程组解出参数值即可;(2)对函数求导得到函数的单调性和极值,进而得到函数的最大值为c54,要使f(x)2|c|恒成立,只要c542|c|即可.【详解】(1)f(x)3x22axb,函数f(x)在x1和x3处取得极值,1,3是方程3x22axb0的两根 .经检验满足题意.(2)由(1)知f(x)x33x29xc,f(x)3x26x9.令f(x)0,得x1或x3.当x变化时,f(x),f(x)随x的变化情况如下表:而f(2)c2,f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论