青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D132 已知数列an是等比数列前n项和是Sn,若a2=2,a3=4,则S5等于( )A8B8C11D113 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱柱的侧面,绕行两周到达点的最短路线的长为( )A B C D4 在正方体ABCDABCD中,点P在线段AD上运动,则异面直线CP与BA所成的角的取值范围是( )A0B0C0D05 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个6 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 7 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.18 函数f(x)=ax2+bx与f(x)=logx(ab0,|a|b|)在同一直角坐标系中的图象可能是( )ABCD9 直线x+y1=0与2x+2y+3=0的距离是( )ABCD10从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD11某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D12某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A4320B2400C2160D1320二、填空题13若实数满足,则的最小值为 14设f(x)是(x2+)6展开式的中间项,若f(x)mx在区间,上恒成立,则实数m的取值范围是15命题“xR,x22x10”的否定形式是16将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 17抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为18(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个三、解答题19记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 20在平面直角坐标系xOy中,点B与点A(1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由21在ABC中,内角A,B,C所对的边分别为a,b,c,已知sinAsinC(cosB+sinB)=0(1)求角C的大小; (2)若c=2,且ABC的面积为,求a,b的值22已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和23已知等差数列an满足a2=0,a6+a8=10(1)求数列an的通项公式;(2)求数列的前n项和24如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值青阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题2 【答案】D【解析】解:设an是等比数列的公比为q,因为a2=2,a3=4,所以q=2,所以a1=1,根据S5=11故选:D【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题3 【答案】D【解析】考点:多面体的表面上最短距离问题【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题4 【答案】D【解析】解:A1BD1C,CP与A1B成角可化为CP与D1C成角AD1C是正三角形可知当P与A重合时成角为,P不能与D1重合因为此时D1C与A1B平行而不是异面直线,0故选:D5 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题6 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C7 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.8 【答案】 D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是减函数,D正确【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力9 【答案】A【解析】解:直线x+y1=0与2x+2y+3=0的距离,就是直线2x+2y2=0与2x+2y+3=0的距离是: =故选:A10【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件11【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.12【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有=388,第二组(1,1,2,2),利用间接法,有()=932根据分类计数原理,可得388+932=1320种,故选D【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题二、填空题13【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小14【答案】5,+)【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x)=x3,再由条件可得mx2 在区间,上恒成立,求得x2在区间,上的最大值,可得m的范围【解答】解:由题意可得 f(x)=x6=x3由f(x)mx在区间,上恒成立,可得mx2 在区间,上恒成立,由于x2在区间,上的最大值为 5,故m5,即m的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题15【答案】 【解析】解:因为全称命题的否定是特称命题所以,命题“xR,x22x10”的否定形式是:故答案为:16【答案】【解析】考点:点关于直线对称;直线的点斜式方程.17【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题18【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查三、解答题19【答案】【解析】解:(1)由2x30 得 x,M=x|x由(x3)(x1)0 得 x1 或x3,N=x|x1,或 x3(2)MN=(3,+),MN=x|x1,或 x3,CR(MN)=【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题20【答案】 【解析】解:()因为点B与A(1,1)关于原点O对称,所以点B得坐标为(1,1)设点P的坐标为(x,y)化简得x2+3y2=4(x1)故动点P轨迹方程为x2+3y2=4(x1)()解:若存在点P使得PAB与PMN的面积相等,设点P的坐标为(x0,y0)则因为sinAPB=sinMPN,所以所以=即(3x0)2=|x021|,解得因为x02+3y02=4,所以故存在点P使得PAB与PMN的面积相等,此时点P的坐标为【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题21【答案】 【解析】(本题满分为12分)解:(1)由题意得,sinA=sin(B+C),sinBcosC+sinCcosBsinCcosBsinBsinC=0,(2分)即sinB(cosCsinC)=0,sinB0,tanC=,故C=(6分)(2)ab=,ab=4,又c=2,(8分)a2+b22ab=4,a2+b2=8由,解得a=2,b=2(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题22【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题23【答案】 【解析】解:(1)设等差数列an的公差为d,a2=0,a6+a8=10,解得,an1+(n1)=n2(2)=数列的前n项和Sn=1+0+,=+0+,=1+=2+=,Sn=24【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面BCD=BC,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论