已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
屯昌县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=2|x|的图象是( )ABCD2 ABC的三内角A,B,C所对边长分别是a,b,c,设向量,若,则角B的大小为( )ABCD3 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D134 点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是AF1F2的内心若,则该椭圆的离心率为( )ABCD5 等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)6 如图,正六边形ABCDEF中,AB=2,则()(+)=( )A6B2C2D67 数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D308 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化9 若不等式1ab2,2a+b4,则4a2b的取值范围是( )A5,10B(5,10)C3,12D(3,12)10与向量=(1,3,2)平行的一个向量的坐标是( )A(,1,1)B(1,3,2)C(,1)D(,3,2) 11过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力12集合的真子集共有( )A个 B个 C个 D个二、填空题13如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为14如图,函数f(x)的图象为折线 AC B,则不等式f(x)log2(x+1)的解集是15设函数则_;若,则的大小关系是_16已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=17【徐州市第三中学20172018学年度高三第一学期月考】函数的单调增区间是_18当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力三、解答题19已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离20在直角坐标系xOy中,圆C的参数方程(为参数)以O为极点,x轴的非负半轴为极轴建立极坐标系()求圆C的极坐标方程;()直线l的极坐标方程是(sin+)=3,射线OM:=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长 21已知函数,()求函数的最大值;()若,求函数的单调递增区间22在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标23 定圆动圆过点且与圆相切,记圆心的轨迹为()求轨迹的方程;()设点在上运动,与关于原点对称,且,当的面积最小时,求直线的方程.24某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元()若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,nN)的函数解析式f(n);()该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望屯昌县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键2 【答案】B【解析】解:若,则(a+b)(sinBsinA)sinC(a+c)=0,由正弦定理可得:(a+b)(ba)c(a+c)=0,化为a2+c2b2=ac,cosB=,B(0,),B=,故选:B【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题3 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用4 【答案】B【解析】解:设AF1F2的内切圆半径为r,则SIAF1=|AF1|r,SIAF2=|AF2|r,SIF1F2=|F1F2|r,|AF1|r=2|F1F2|r|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|a=2,椭圆的离心率e=故选:B5 【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力6 【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:=2+42+2=6故选:D【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式7 【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用8 【答案】B【解析】考点:棱柱、棱锥、棱台的体积9 【答案】A【解析】解:令4a2b=x(ab)+y(a+b)即解得:x=3,y=1即4a2b=3(ab)+(a+b)1ab2,2a+b4,33(ab)65(ab)+3(a+b)10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a2b=x(ab)+y(a+b),并求出满足条件的x,y,是解答的关键10【答案】C【解析】解:对于C中的向量:(,1)=(1,3,2)=,因此与向量=(1,3,2)平行的一个向量的坐标是故选:C【点评】本题考查了向量共线定理的应用,属于基础题11【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为12【答案】C【解析】考点:真子集的概念.二、填空题13【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题14【答案】(1,1 【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)log2(x+1)的解集是:(1,1,故答案为:(1,115【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。故答案为:,16【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或1817【答案】【解析】 ,所以增区间是18【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则三、解答题19【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题20【答案】 【解析】解:(I)圆C的参数方程(为参数)消去参数可得:(x1)2+y2=1把x=cos,y=sin代入化简得:=2cos,即为此圆的极坐标方程(II)如图所示,由直线l的极坐标方程是(sin+)=3,射线OM:=可得普通方程:直线l,射线OM联立,解得,即Q联立,解得或P|PQ|=2 21【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()由已知当,即, 时,()当时,递增即,令,且注意到函数的递增区间为22【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程【解答】解:(1)由于直线x=4与圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为yb=k(xa),k0则直线l2方程为:yb=(xa)(6分)C1和C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4abk)即(a+b2)k=ba+3或(ab+8)k=a+b5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,)或点P2(,)(12分)23【答案】【解析】()在圆内,圆内切于圆,点的轨迹为椭圆,且轨迹的方程为 .4分()当为长轴(或短轴)时,此时. .5分当直线的斜率存在且不为0时,设直线方程为,联立方程得将上式中的替换为,得9分,当且仅当,即时等号成立,此时面积最小值是.面积最小值是,此时直线的方程为或 12分24【答案】 【解析】解:(I)当n20时,f(n)=50020+200(n20)=200n+6000,当n19时,f(n)=500n100(20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微笑服务的心得体会5篇
- 电力竞赛心得体会
- 2022科学新课标的心得体会(8篇)
- 青海省海北藏族自治州(2024年-2025年小学五年级语文)统编版开学考试(下学期)试卷及答案
- 高考文综区域地理教案 东亚精讲精练 内含考向指导 内容精析 典例剖析 高考链接
- 上海市市辖区(2024年-2025年小学五年级语文)人教版期中考试(下学期)试卷及答案
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 高中化学《弱电解质的电离》说课稿
- s版二年级语文下册全册教案
- 湘教版小学美术三年级上册全册教案
- (零模)徐州市2024~2025学年上学期高三期中考试 英语试卷(含答案)
- 四川公安基础知识模拟5
- 英语KET官方样题Test1- Test 2
- 吉林省松原市长岭县长岭镇2023-2024学年四年级上学期期中道德与法治试卷
- 2023年四川农信(农商行)招聘笔试真题
- 《纪念白求恩》说课课件 2024-2025学年统编版语文七年级上册
- 财务管理考试试题及答案
- 汽车机械基础-说课课件
- 【课件】第七单元能源的合理利用与开发新版教材单元分析-九年级化学人教版(2024)上册
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 中国建设银行招聘(全国)笔试真题2023
评论
0/150
提交评论