高考数学二轮复习专题4立体几何专题限时集训9空间中的平行与垂直关系理.docx_第1页
高考数学二轮复习专题4立体几何专题限时集训9空间中的平行与垂直关系理.docx_第2页
高考数学二轮复习专题4立体几何专题限时集训9空间中的平行与垂直关系理.docx_第3页
高考数学二轮复习专题4立体几何专题限时集训9空间中的平行与垂直关系理.docx_第4页
高考数学二轮复习专题4立体几何专题限时集训9空间中的平行与垂直关系理.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题限时集训(九)空间中的平行与垂直关系(对应学生用书第95页)(限时:40分钟)题型1空间位置关系的判断与证明1,3,6,7,8,9,10,12,14题型2平面图形的翻折问题2,4,5,11,13一、选择题1(2017河北邢台二模)设m,n是两条不同的直线,是两个不同的平面给出下列四个命题:若mn,m,则n;若mn,m,则n;若m,m,则;若n,n,则.其中真命题的个数为()A1B2C3D4A是常用结论;还有可能n;还有可能,相交,此时m与它们的交线平行;垂直于同一直线的两个平面平行故选A.2(2017贵阳二模)如图96,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在AEF内的射影为O,则下列说法正确的是()图96AO是AEF的垂心BO是AEF的内心CO是AEF的外心DO是AEF的重心A由题意可知PA,PE,PF两两垂直,PA平面PEF,从而PAEF,而PO平面AEF,则POEF.POPAP,EF平面PAO,EFAO,同理可知AEFO,AFEO,O为AEF的垂心故选A.3(2016长沙模拟)如图97,正方体ABCDA1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF,则下列结论中错误的是()图97AACBFB三棱锥ABEF的体积为定值CEF平面ABCDD异面直线AE,BF所成的角为定值D对于选项A,连接BD(图略),易知AC平面BDD1B1.BF平面BDD1B1,ACBF,故A正确;对于选项B,AC平面BDD1B1,A到平面BEF的距离不变EF,B到EF的距离为1,BEF的面积不变,三棱锥ABEF的体积为定值,故B正确;对于选项C,EFBD,BD平面ABCD,EF平面ABCD,EF平面ABCD,故C正确;对于选项D,异面直线AE,BF所成的角不为定值,当F与B1重合时,令上底面中心为O,则此时两异面直线所成的角是A1AO,当E与D1重合时,点F与O重合,则两异面直线所成的角是OBC1,这两个角不相等,故异面直线AE,BF所成的角不为定值,故D错误4(2017广东惠州三调)如图98是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:图98直线BE与直线CF异面;直线BE与直线AF异面;直线EF平面PBC;平面BCE平面PAD.其中正确的有() 【导学号:07804069】A1个B2个C3个D4个B将展开图还原为几何体(如图),因为四边形ABCD为正方形,E,F分别为PA,PD的中点,所以EFADBC,则直线BE与CF共面,错;因为AF平面PAD,B平面PAD,E平面PAD,EAF,所以BE与AF是异面直线,正确;因为EFADBC,EF平面PBC,BC平面PBC,所以EF平面PBC,正确;平面PAD与平面BCE不一定垂直,错故选B.5(2017江西景德镇二模)将图99(1)中的等腰直角三角形ABC沿斜边BC上的中线折起得到空间四面体ABCD(如图99(2),则在空间四面体ABCD中,AD与BC的位置关系是()图99(1)图99(2)A相交且垂直B相交但不垂直C异面且垂直D异面但不垂直C在题图(1)中,ADBC,故在题图(2)中,ADBD,ADDC,又因为BDDCD,所以AD平面BCD,又BC平面BCD,D不在BC上,所以ADBC,且AD与BC异面,故选C.6(2017合肥二模)若平面截三棱锥所得截面为平行四边形,则该三棱锥中与平面平行的棱有()A0条B1条C2条D0条或2条C因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面平行的棱有2条,故选C.7(2017河北唐山3月模拟)已知P是ABC所在平面外一点,M,N分别是AB,PC的中点,若MNBC4,PA4,则异面直线PA与MN所成角的大小是()A30B45C60D90A取AC的中点O,连接OM,ON(图略),则ONAP,ONAP,OMBC,OMBC,所以异面直线PA与MN所成的角为ONM(或其补角),在ONM中,OM2,ON2,MN4,由勾股定理的逆定理得OMON,则ONM30.故选A.8(2016福建漳州八校一模)下列命题中正确的个数是()过异面直线a,b外一点P有且只有一个平面与a,b都平行;直线a,b在平面内的射影相互垂直,则ab;底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;直线a,b分别在平面,内,且ab,则.A0B1C2D3A对于,当点P与两条异面直线中的一条直线确定的平面与另一条直线平行时,就无法找到过点P且与两条异面直线都平行的平面,故错误;对于,在如图1所示的三棱锥PABC中,PB平面ABC,BABC,满足PA,PC在底面的射影相互垂直,但PA与PC不垂直,故错误;对于,在如图2所示的三棱锥PABC中,ABBCACPA2,PBPC3,满足底面ABC是等边三角形,侧面都是等腰三角形,但三棱锥PABC不是正三棱锥,故错误;对于,也可以平行,故错误所以正确命题的个数为0.选A.二、填空题9(2017深圳模拟)在三棱锥PABC中,PB6,AC3,G为PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为_8过点G作EFAC,分别交PA、PC于点E、F,过E、F分别作ENPB、FMPB,分别交AB、BC于点N、M,连接MN(图略),则四边形EFMN是平行四边形(平面EFMN为所求截面),且EFMNAC2,FMENPB2,所以截面的周长为248.10(2017安徽安庆二模)正四面体ABCD中,E、F分别为AB、BD的中点,则异面直线AF、CE所成角的余弦值为_取BF的中点G,连接CG,EG,(图略)易知EGAF,所以异面直线AF、CE所成的角即为GEC(或其补角)不妨设正四面体棱长为2,易求得CE,EG,CG,由余弦定理得cosGEC,异面直线AF、CE所成角的余弦值为.11已知在直角梯形ABCD中,ABAD,CDAD,AB2AD2CD2,将直角梯形ABCD沿AC折叠成三棱锥DABC,当三棱锥DABC的体积取最大值时,其外接球的体积为_. 【导学号:07804070】当平面DAC平面ABC时,三棱锥DABC的体积取最大值此时易知BC平面DAC,BCAD.又ADDC,AD平面BCD,ADBD,取AB的中点O,易得OAOBOCOD1,故O为所求外接球的球心,故半径r1,体积Vr3.12(2017武昌区调研)若四面体ABCD的三组对棱分别相等,即ABCD,ACBD,ADBC,给出下列结论:四面体ABCD每组对棱相互垂直;四面体ABCD每个面的面积相等;从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90而小于180;连接四面体ABCD每组对棱中点的线段相互垂直平分;从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长其中正确结论的序号是_(写出所有正确结论的序号),如图1,AE,CF分别为BD边上的高,由三角形全等可知DEBF,当且仅当ADAB,CDBC时,E,F重合,此时ACBD,所以当四面体ABCD为正四面体时,每组对棱相互垂直,故错误;,因为ABCD,ACBD,ADBC,所以四面体四个面全等,所以四面体ABCD每个面的面积相等,故正确;,当四面体为正四面体时,同一个顶点出发的任意两条棱的夹角均为60,此时四面体ABCD每个顶点出发的三条棱两两夹角之和等于180,故错误;,如图2,G,H,I,J为各边中点,因为ACBD,所以四边形GHIJ为菱形,GI,HJ相互垂直平分,其他同理可得,所以连接四面体ABCD每组对棱中点的线段相互垂直平分,故正确;,从A点出发的三条棱为AB,AC,AD,因为ACBD,所以AB,AC,AD可以构成三角形,同理可得其他,所以从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长,故正确综上所述,正确的结论为.三、解答题13在平面四边形ABCD(图910(1)中,ABC与ABD均为直角三角形且有公共斜边AB,设AB2,BAD30,BAC45,将ABC沿AB折起,构成如图910(2)所示的三棱锥CABD.图910(1)图910(2)(1)当CD时,求证:平面CAB平面DAB;(2)当ACBD时,求三棱锥CABD的高解(1)证明:当CD时,取AB的中点O,连接CO,DO,在RtABC,RtADB中,AB2,则CODO1,CD,CO2DO2CD2,即COOD,由BAC45得ABC为等腰直角三角形,COAB,又ABODO,AB,OD平面ABD,CO平面ABD,CO平面ABC,平面CAB平面DAB.(2)由已知可求得AD,ACBC,BD1,当ACBD时,由已知ACBC,得AC平面BDC,CD平面BDC,ACCD,由勾股定理,得CD1,而BDC中,BD1,BC,CD2BD2BC2,CDBD.SBDC11.三棱锥CABD的体积VSBDCAC.SABD1,设三棱锥CABD的高为h,则由h,解得h.14如图911,一个侧棱长为l的直三棱柱ABCA1B1C1容器中盛有液体(不计容器厚度)若液面恰好分别过棱AC,BC,B1C1,A1C1的中点D,E,F,G.图911(1)求证:平面DEFG平面ABB1A1;(2)当底面ABC水平放置时,求液面的高. 【导学号:07804071】解(1)证明:因为D,E分别为棱AC,BC的中点,所以DE是ABC的中位线,所以DEAB.又DE平面ABB1A1,AB平面ABB1A1,所以DE平面ABB1A1.同理DG平面ABB1A1,又DEDGD,所以平面DEFG平面A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论