




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时 映射与函数 第二章 2.1.1 函 数 学习目标 1.了解映射、一一映射的概念. 2.了解映射与函数间的关系. 3.会判定一些对应法则是否为映射或一一映射. 题型探究 问题导学 内容索引 当堂训练 问题导学 思考 知识点一 映射 设A三角形,BR,对应法则是f:每一个三角形对应它的 周长.请问:A中的元素与B中的元素有什么关系? 答案 答案 A中的任一元素,在B中都有唯一确定的元素与之对应. 映射的概念 (1)映射的定义 设A,B是两个 集合,如果按照某种对应法则f,对A中的 元 素x,在B中元素y与x对应,则称f是集合A到集合B的映射,记作 . 提醒:映射f:AB中,集合A,B可以是数集,也可以是点集或其他集 合,这两个集合有先后次序. 梳理 非空任意一个 有一个且仅有一个 f:AB (2)象、原象的概念 给定一个集合A到集合B的映射f,若集合B中的元素y与集合A中的元素x 相对应,则称y是x在映射f作用下的 ,记作f(x),x称作y的 . 象原象 思考 知识点二 一一映射 映射f:y2x是A1,2,3B2,4,6的映射; 映射:y2x是A1,2,3C1,2,4,6的映射,问映射f与映射 g有什么不同? 答案 答案 在映射f下,集合A中的每个元素都有象,集合B中的每个 元素都有原象;在映射g下,集合C中的元素不一定都有原象, 如1. 梳理 一一映射的定义 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素, 在集合A中都 原象,这时我们说这两个集合的元素之间存 在 关系,并把这个映射叫做从集合A到集合B的一一映射. 有且只有一个 一一对应 思考 知识点三 映射和函数的关系 一个映射是否一定是一个函数?函数能看成一个映射吗? 答案 答案 映射不一定是函数,函数一定是映射. 梳理 1.映射下的函数定义 设A,B是两个 ,f是A到B的一个映射,那么映射f:AB就叫做 A到B的函数. 2.映射和函数的关系 函数是数集到数集的 ,即映射是函数概念的推广,函数是一种特殊 的映射. 非空数集 映射 题型探究 例1 下列对应是否构成映射?若是映射,是否为一一映射? (1)Ax|0x3,By|0y1,f:y x,xA,yB; 解答 类型一 映射的概念 (2)AN,BN,f:y|x1|,xA,yB; 解 是映射,是一一映射. 解 不是映射. (3)Ax|0x1,By|y1,f:y ,xA,yB; 解答 (4)AR,By|yR,y0,f:y|x|,xB,yB. 解 是映射,是一一映射. 解 是映射,不是一一映射. 判定一个对应法则f:AB是映射的方法 (1)明确集合A,B中的元素的特征. (2)判断A中的每个元素是否在集合B中有唯一的元素与之对应.若进一步 判断是否为一一映射,还需注意B中的每一个元素在A中都有原象,且原 象唯一. 反思与感悟 解 (1)是映射,是一一映射,是函数. (2)是映射,是一一映射,不是函数. (3)不是映射. (4)是映射,不是一一映射,不是函数. 跟踪训练1 下图中(1),(2),(3),(4)用箭头所标明的A中元素与B中元素 的对应法则是不是映射?是不是一一映射?是不是函数关系? 解答 例2 已知映射f:AB中AB(x,y)|x,yR,若f:A中的元素(x, y)对应到B中的元素是(3x2y1,4x3y1). (1)求A中的元素(3,2)在B中对应的象; 类型二 象与原象 解答 解 f:(x,y)(3x2y1,4x3y1), 且(3,2)是A中的元素, 3x2y1332216,4x3y14332117, (3,2)在B中对应的象为(6,17). (2)求B中的元素(3,2)在A中对应的原象. 解答 引申探究 1.若使A中的元素(x,y)在B中与其自身(x,y)对应,这样的元素存在吗? 解答 解 若在A中的元素(x,y)在B中能与自身对应, 2.若f:A中的元素(x,y)对应到B中的元素是(3x2y1,4x3y1)改为 :对应到B中的元素是(xy,xy),则B中的元素满足什么条件时在A中 有原象? 解答 当且仅当(b)24ab24a0时,方程有实数根,因此只有当B 中元素(a,b)满足b24a0时,在A中才有原象. 求象与原象的方法 (1)若已知A中的元素a(即原象a),求B中与之对应的元素b(即象b),这时 只要将元素a代入对应法则f求解即可. (2)若已知B中的元素b(即象b),求A中与之对应的元素a(即原象a),这时 构造方程(组)进行求解即可,需注意解得的结果可能有多个. 反思与感悟 跟踪训练2 已知(x,y)在映射f的作用下的象是(xy,xy). (1)求(2,3)在f作用下的象; 解答 解 把(2,3)代入对应法则,即xy231,xy236 , 所以(2,3)在f作用下的象为(1,6). (2)若在f作用下的象是(2,3),求它的原象. 解答 所以在f作用下的象(2,3)的原象为(1,3)或(3,1). 例3 (1)集合Aa,b,c,d,集合Be,f,从集合A到集合B的映射 的个数为_; 类型三 映射的综合应用 答案解析 解析 可以用列举法: 共有222216(种). 16 (2)已知映射f:AB,其中ABR,对应法则f:xyx22x2,若 对实数kB,在集合A中不存在原象,则k的取值范围是_. 答案解析 解析 由于kB且在A中不存在原象, 则x22x2k无解,即x22x2k0无解. 44(2k)0,k1. (,1) 求映射个数的两类问题及解法 (1)给定两个集合A,B,问由AB可建立的映射的个数,这类问题与A ,B中元素的个数有关系.一般地,若A中有m个元素,B中有n个元素, 则从AB共有nm个不同的映射. (2)含条件的映射个数的确定,解决这类问题一定要注意对应关系所满 足的条件,要采用分类讨论的思想方法来解决. 反思与感悟 跟踪训练3 集合Aa,b,B1,0,1,从A到B的映射f:AB满足 f(a)f(b)0,那么这样的映射f:AB的个数为 A.2 B.3 C.5 D.8 答案解析 当堂训练 1.在从集合A到集合B的映射中,下列说法正确的是 A.集合B中的某一个元素b的原象可能不止一个 B.集合A中的某一个元素a的象可能不止一个 C.集合A中的两个不同元素所对应的象必不相同 D.集合B中的两个不同元素的原象可能相同 答案 23451 解析 根据映射的概念可知:A中元素必有唯一确定的象,但在象的集 合中一个象可以有不同的原象,故A正确. 解析 2.已知集合Aa,b,集合B0,1,下列对应不是A到B的映射的是 答案 23451 解析 C选项中,b无象. 解析 3.已知(x,y)在映射f下的象是(2xy,x2y),则原象(1,2)在f下的象为 A.(0,3) B.(1,3) C.(0,3) D.(2,3) 答案 23451 解析 2xy2120,x2y1223,故选A. 解析 4.设集合A、B都是坐标平面上的点集(x,y)|xR,yR,映射f: AB使集合A中的元素(x,y)映射成集合B中的元素(xy,xy),则在f 下,象(2,1)的原象是 答案 23451解析 5.已知集合Aa,b,Bc,d,则从A到B的不同映射有_个. 答案解析 解析 ac,bc;ad,bd;ac,bd;ad,bc,共4个. 23451 4 规律与方法 1.映射的特征 (1)任意性:A中任意元素x在B中都有元素y与之对应,即A中元素不能有 剩余. (2)唯一性:从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级生物上册 第三单元 第五章 第一节 光合作用吸收二氧化碳释放氧气教学设计 (新版)新人教版
- 三年级数学上册 九 我当小厨师-分数的初步认识 信息窗2 简单分数的大小比较第2课时教学设计 青岛版六三制
- 九年级语文下册 第一单元 4海燕教学设计 新人教版
- 初中政治 (道德与法治)人教部编版九年级上册延续文化血脉教案配套
- 2024哈电集团汽轮机公司春季校园招聘笔试参考题库附带答案详解
- 七年级地理下册 7.2《“鱼米之乡”长江三角洲地区》教学设计3 鲁教版五四制
- 辅警入职培训总结
- 对培训机构的认识
- 信息技术泰山版七年级上册 2.3《搜索信息》教学设计
- 初中政治思品人教部编版七年级下册(道德与法治)青春萌动教学设计及反思
- 2025届黑龙江省大庆市高三下学期第三次模拟考试历史试题(含答案)
- 养老院火灾事故防范重点培训课件
- 人才招聘中的社交媒体运用与效果评估
- 北京2025年北京教育学院招聘30人笔试历年参考题库附带答案详解
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
- JTG-T-F20-2015公路路面基层施工技术细则
- 江苏省苏州市2023-2024学年五年级下学期期中综合测试数学试卷(苏教版)
- 2024年4月贵州省高三年级适应性考试物理试卷(含答案)
- BD-Ⅱ安装使用说明书_博睿10-08-17
- 新版现代西班牙语第一册课后答案(共104页)
- 商品售后服务认证实施规则
评论
0/150
提交评论