高中数学第一章集合与函数概念1_2_2_1函数的表示法课件新人教版必修1_第1页
高中数学第一章集合与函数概念1_2_2_1函数的表示法课件新人教版必修1_第2页
高中数学第一章集合与函数概念1_2_2_1函数的表示法课件新人教版必修1_第3页
高中数学第一章集合与函数概念1_2_2_1函数的表示法课件新人教版必修1_第4页
高中数学第一章集合与函数概念1_2_2_1函数的表示法课件新人教版必修1_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2.2 函数的表示法 第1课时 函数的表示法 目标定位 1.掌握函数的三种表示方法解析法、 图象法、列表法.2.会求函数解析式,并能用描点法画 出一些简单函数的图象.3.在实际情境中,会根据不同 的需要选择恰当方法表示函数. 函数的表示方法 自 主 预 习 数学表达式 图象 表格 温馨提示:(1)不是所有的函数都能用解析法表示;(2)函数的三 种表示法各有优缺点,在使用时要根据具体情况合理选用. 即 时 自 测 1.思考判断(正确的打“”,错误的打“”) 答案 (1) (2) (3) 2.已知函数f(x)由下表给出,则f(3)等于( ) x1x222x4 f(x)123 A.1 B.2 C.3 D.不存在 解析 因为3(2,4,所以f(3)3. 答案 C 答案 C 4.如图,函数f(x)的图象是折线段ABC,则f(f(3)_. 解析 由函数的图象知,f(3)1,f(1)2. 所以f(f(3)f(1)2. 答案 2 类型一 函数的三种表示法 【例1】某商场新进了10台彩电,每台售价3 000元,试求收 款数y与售出台数x之间的函数关系,分别用列表法、图象 法、解析法表示出来. 解 (1)列表法如下: x/台12345 y/元3 0006 0009 00012 00015 000 x/台678910 y/元18 00021 00024 00027 00030 000 (2)图象法:如图所示. (3)解析法:y3 000x,x1,2,3,10. 规律方法 列表法、图象法和解析法从三个不同的角度刻画 自变量与函数值的对应关系,同一个函数可以用不同的方法 表示.在用三种方法表示函数时要注意:(1)解析法必须注明函 数的定义域;(2)列表法主要适用于自变量个数较少,并且自 变量的取值为孤立的实数.同时当变量间的关系无规律时,也 常采用列表法表示两变量之间的关系.(3)图象法表示要注意 是否连线. 类型二 函数的图象及应用 (1)解析 由函数的图象知,f(3)1,f(1)2,所以 f(f(3)f(1)2. 答案 2 由图象知函数的值域为3,1. 类型三 求函数的解析式(互动探究) 【例3】求下列函数的解析式: (1)已知f(x1)x2x1,求f(x); (2)(2016杭州高一检测)若二次函数f(x)x2bxc满足f(2) f(2),且方程f(x)0的一个根为1.求函数f(x)的解析式. 【迁移探究2】将本例(2)中条件改为:二次函数f(x)的图象过 点A(0,5),B(5,0),其对称轴为x2,求其解析式. 课堂小结 1.函数三种表示法的内在联系 (1)分别从三个不同角度刻画了自变量与函数值的对应关系 (2)在已知函数的解析式研究函数的性质时,可以先由解析 式确定函数的定义域,然后通过取一些有代表性的自变量 的值与对应的函数值列表,描点,连线作出函数的图象, 利用函数图象形象直观的优点,能够帮助我们了解概念和 有关性质. 2.画函数的图象一般还是采用列表、描点、连线的描点法, 主要解决两个问题:位置和形状.函数图象位置的确定是以 它的定义域为主要依据;函数图象形状的刻画是依据对应 法则而定的. 3.求函数解析式的常用方法:(1)待定系数法;(2)换元(配凑) 法;(3)构造方程法:当同一个对应关系中的两个自变量之 间有互为相反或者互为倒数关系时,构造方程组求解. 1.若f(x)2x3,g(x2)f(x),则g(x)的表达式为( ) A.2x1 B.2x1 C.2x3 D.2x7 解析 g(x2)2x32(x2)1,所以g(x)2x1. 答案 B 解析 由函数的图象知,xR且x0.f(x)的 定义域为(,0)(0,). 答案 C 3.已知函数yf(x)由表格给出,若f(a)3,则a_. x3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论