高考数学一轮复习 第三章 导数及其应用 3_2_1 导数与函数的单调性课时作业 文 北师大版_第1页
高考数学一轮复习 第三章 导数及其应用 3_2_1 导数与函数的单调性课时作业 文 北师大版_第2页
高考数学一轮复习 第三章 导数及其应用 3_2_1 导数与函数的单调性课时作业 文 北师大版_第3页
高考数学一轮复习 第三章 导数及其应用 3_2_1 导数与函数的单调性课时作业 文 北师大版_第4页
高考数学一轮复习 第三章 导数及其应用 3_2_1 导数与函数的单调性课时作业 文 北师大版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺第2讲导数在研究函数中的应用第1课时导数与函数的单调性基础巩固题组(建议用时:40分钟)一、选择题1函数f(x)xln x的单调递减区间为()A(0,1) B(0,)C(1,) D(,0)(1,)解析函数的定义域是(0,),且f(x)1,令f(x)0,解得0xf(c)f(d)Bf(b)f(a)f(e)Cf(c)f(b)f(a)Df(c)f(e)f(d)解析依题意得,当x(,c)时,f(x)0,因此,函数f(x)在(,c)上是增函数,由abf(b)f(a)答案C4若函数f(x)2x33mx26x在区间(2,)上为增函数,则实数m的取值范围为()A(,2) B(,2C. D.解析f(x)6x26mx6,当x(2,)时,f(x)0恒成立,即x2mx10恒成立,mx恒成立令g(x)x,g(x)1,当x2时,g(x)0,即g(x)在(2,)上单调递增,m2.答案D5(2017上饶模拟)函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,则f(x)2x4的解集为()A(1,1) B(1,)C(,1) D(,)解析由f(x)2x4,得f(x)2x40,设F(x)f(x)2x4,则F(x)f(x)2,因为f(x)2,所以F(x)0在R上恒成立,所以F(x)在R上单调递增又F(1)f(1)2(1)42240,故不等式f(x)2x40等价于F(x)F(1),所以x1.答案B二、填空题6已知函数f(x)(x22x)ex(xR,e为自然对数的底数),则函数f(x)的单调递增区间为_解析因为f(x)(x22x)ex,所以f(x)(2x2)ex(x22x)ex(x22)ex.令f(x)0,即(x22)ex0,因为ex0,所以x220,解得x,所以函数f(x)的单调递增区间为(,)答案(,)7已知函数f(x)x24x3ln x在区间t,t1上不单调,则t的取值范围是_解析由题意知f(x)x4,由f(x)0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,由t1t1或t3t1,得0t1或2t0),则h(x)0,即h(x)在(0,)上是减函数由h(1)0知,当0x0,从而f(x)0;当x1时,h(x)0,从而f(x)0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,)10已知函数f(x)x3ax2xc,且af.(1)求a的值;(2)求函数f(x)的单调区间;(3)设函数g(x)(f(x)x3)ex,若函数g(x)在x3,2上单调递增,求实数c的取值范围解(1)由f(x)x3ax2xc,得f(x)3x22ax1.当x时,得af322a1,解得a1.(2)由(1)可知f(x)x3x2xc,则f(x)3x22x13(x1),列表如下:x(1,)f(x)f(x)递增递减递增所以f(x)的单调递增区间是和(1,);f(x)的单调递减区间是.(3)函数g(x)(f(x)x3)ex(x2xc)ex,有g(x)(2x1)ex(x2xc)ex(x23xc1)ex,因为函数g(x)在x3,2上单调递增,所以h(x)x23xc10在x3,2上恒成立,只要h(2)0,解得c11,所以c的取值范围是11,)能力提升题组(建议用时:20分钟)11函数f(x)在定义域R内可导,若f(x)f(2x),且当x(,1)时,(x1)f(x)0,设af(0),bf,cf(3),则()Aabc BcbaCcab Dbca解析依题意得,当x0,则f(x)在(,1)上为增函数;又f(3)f(1),且101,因此有f(1)f(0)f,即有f(3)f(0)f,ca0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是_解析令g(x),则g(x)0,x(0,),所以函数g(x)在(0,)上单调递增又g(x)g(x),则g(x)是偶函数,g(2)0g(2)则f(x)xg(x)0或解得x2或2x0的解集为(2,0)(2,)答案(2,0)(2,)14已知函数f(x)ln x,g(x)axb.(1)若f(x)与g(x)在x1处相切,求g(x)的表达式;(2)若(x)f(x)在1,)上是减函数,求实数m的取值范围解(1)由已知得f(x),f(1)1a,a2.又g(1)0ab,b1,g(x)x1.(2)(x)f(x)ln x在1,)上是减函数,(x)0在1,)上恒成立,x2(2m2)x10在1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论