高考数学复习统计与统计案例、概率第4节随机事件的概率课件文新人教A版.pptx_第1页
高考数学复习统计与统计案例、概率第4节随机事件的概率课件文新人教A版.pptx_第2页
高考数学复习统计与统计案例、概率第4节随机事件的概率课件文新人教A版.pptx_第3页
高考数学复习统计与统计案例、概率第4节随机事件的概率课件文新人教A版.pptx_第4页
高考数学复习统计与统计案例、概率第4节随机事件的概率课件文新人教A版.pptx_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第4节随机事件的概率,最新考纲1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.,1.概率与频率,(1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率. (2)概率:对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用来估计概率P(A).,知 识 梳 理,频率fn(A),2.事件的关系与运算,包含,BA,AB,并事件,事件A发生,事件B发生,3.概率的几个基本性质,(1

2、)概率的取值范围:. (2)必然事件的概率P(E). (3)不可能事件的概率P(F). (4)互斥事件概率的加法公式 如果事件A与事件B互斥,则P(AB). 若事件B与事件A互为对立事件,则P(A).,0P(A)1,1,0,P(A)P(B),1P(B),常用结论与微点提醒 1.频率随着试验次数的改变而改变,概率是一个常数. 2.对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,“互斥”是“对立”的必要不充分条件.,1.思考辨析(在括号内打“”或“”) (1)事件发生的频率与概率是相同的.() (2)在大量的重复实验中,概率是频率的稳定值.() (3)若随机事件A发生的概率为P(A),则0

3、P(A)1.() (4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.() 答案(1)(2)(3)(4),诊 断 自 测,2.(教材习题改编)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”() A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件 解析“至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件. 答案C,答案A

4、,4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为() A.0.5 B.0.3 C.0.6 D.0.9 解析依题设知,此射手在一次射击中不超过8环的概率为1(0.20.3)0.5. 答案A,5.(2018北京东城区调研)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:,则该营业窗口上午9点钟时,至少有2人排队的概率是_. 解析由表格知,至少有2人排队的概率P0.30.30.10.040.74. 答案0.74,考点一随机事件间的关系,【例1】 (1)袋中装有3个白球和4个黑球,从中任取3个球,则:恰有

5、1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为() A. B. C. D.,解析(1)至少有1个白球和全是黑球不同时发生,且一定有一个发生.故中两事件是对立事件.不是互斥事件,是互斥事件,但不是对立事件,因此是对立事件的只有,选B.,答案(1)B(2)A,规律方法1.准确把握互斥事件与对立事件的概念 (1)互斥事件是不可能同时发生的事件,但也可以同时不发生. (2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. 2.判别互斥、对立事件的方法 判别互斥事件、对立事件一

6、般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.,【训练1】 从1,2,3,4,5这五个数中任取两个数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是() A. B. C. D. 解析从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数. 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件. 又中的事件可以同时发生,不是对立事件. 答案C

7、,考点二随机事件的频率与概率,【例2】 (2017全国卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:,以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率; (2)设六月份一

8、天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.,(2)当这种酸奶一天的进货量为450瓶时, 若最高气温低于20,则Y2006(450200)24504100; 若最高气温位于区间20,25),则Y3006(450300)24504300; 若最高气温不低于25,则Y450(64)900, 所以,利润Y的所有可能值为100,300,900. Y大于零当且仅当最高气温不低于20,,因此Y大于零的概率的估计值为0.8.,规律方法1.概率与频率的关系 频率反映了一

9、个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值. 2.随机事件概率的求法 利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率. 提醒概率的定义是求一个事件概率的基本方法.,【训练2】 (2018武汉调研)某鲜花店将一个月(30天)某品种鲜花的日销售量与销售天数统计如下表,将日销售量在各区间的销售天数占总天数的值视为概率.,(1)求这30天中日销售量低于100枝的概率; (2)若此花店在日销售量低于100枝的时候选择两天做促销活动,求这两天恰

10、好是在日销售量低于50枝时的概率.,解(1)设鲜花店日销售量为x枝,,(2)日销售量低于100枝共有8天,从中任选两天做促销活动,共有28种情况;日销售量低于50枝共有3天,从中任选两天做促销活动,共有3种情况.,考点三互斥事件与对立事件的概率,【例3】 (一题多解)经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:,求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.,解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥. (1)记“至多2人排队等候”为事件G,则GABC, 所以P(G)P(ABC)P(A)P(B)P(C) 0.10.160.30.56. (2)法一记“至少3人排队等候”为事件H, 则HDEF, 所以P(H)P(DEF)P(D)P(E)P(F)0.30.10.040.44. 法二记“至少3人排队等候”为事件H,则其对立事件为事件G, 所以P(H)1P(G)0.44.,【训练3】 某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论