版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9.7抛物线,第九章平面解析几何,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,平面内与一个定点F和一条定直线l(l不经过点F)的距离_的点的轨迹叫做抛物线.点F叫做抛物线的_,直线l叫做抛物线的_.,1.抛物线的概念,知识梳理,ZHISHISHULI,相等,焦点,准线,2.抛物线的标准方程与几何性质,1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?,提示过点F且与l垂直的直线.,2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?,提示直线与抛物线的对称轴平行时,只有一个交点,但不是相切,
2、所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.,【概念方法微思考】,(3)抛物线既是中心对称图形,又是轴对称图形.(),题组一思考辨析,1.判断下列结论是否正确(请在括号中打“”或“”) (1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.(),基础自测,JICHUZICE,1,2,3,4,5,6,7,(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x22ay(a0)的通径长为2a.(),1,2,3,4,5,6,7,题组二教材改编,1,2,3,4,5,6,7,2.过抛物线y24x的焦点的直线l交抛物线于P(x1,y
3、1),Q(x2,y2)两点,如果x1x26,则|PQ|等于 A.9 B.8 C.7 D.6,解析抛物线y24x的焦点为F(1,0),准线方程为x1. 根据题意可得,|PQ|PF|QF|x11x21x1x228.,1,2,3,4,5,6,7,3.若抛物线y24x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x4y70的距离之和的最小值是,解析由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离, 由抛物线y24x及直线方程3x4y70可得直线与抛物线相离. 点P到准线l的距离与点P到直线3x4y70的距离之和的最小值为点F(1,0)到直线3x4y70的距离,,1,2,3,4
4、,5,6,7,4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(2,4),则该抛物线的标准方程为_.,解析设抛物线方程为y2mx(m0)或x2my(m0). 将P(2,4)代入,分别得方程为y28x或x2y.,y28x或x2y,题组三易错自纠,5.设抛物线y28x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是A.4 B.6 C.8 D.12,1,2,3,4,5,6,7,解析如图所示, 抛物线的准线l的方程为x2,F是抛物线的焦点, 过点P作PAy轴,垂足是A,延长PA交直线l于点B,则|AB|2. 由于点P到y轴的距离为4, 则点P到准线l的距离|PB|426, 所以点P到焦点
5、的距离|PF|PB|6. 故选B.,1,2,3,4,5,6,7,6.已知抛物线C与双曲线x2y21有相同的焦点,且顶点在原点,则抛物线C的方程是,7.设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是_.,1,2,3,4,5,6,7,1,1,解析Q(2,0),当直线l的斜率不存在时,不满足题意, 故设直线l的方程为yk(x2), 代入抛物线方程,消去y整理得k2x2(4k28)x4k20, 由(4k28)24k24k264(1k2)0, 解得1k1.,2,题型分类深度剖析,PART TWO,例1设P是抛物线y24x上的一个动点,若B(3,2),则
6、|PB|PF|的最小值为_.,题型一抛物线的定义和标准方程,命题点1定义及应用,多维探究,4,解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1, 则|P1Q|P1F|. 则有|PB|PF|P1B|P1Q|BQ|4, 即|PB|PF|的最小值为4.,1.若将本例中的B点坐标改为(3,4),试求|PB|PF|的最小值.,解由题意可知点B(3,4)在抛物线的外部. |PB|PF|的最小值即为B,F两点间的距离,F(1,0),,2.若将本例中的条件改为:已知抛物线方程为y24x,直线l的方程为xy50,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1d2的最小值.,解由题意知
7、,抛物线的焦点为F(1,0). 点P到y轴的距离d1|PF|1, 所以d1d2d2|PF|1. 易知d2|PF|的最小值为点F到直线l的距离,,命题点2求标准方程,例2设抛物线C:y22px(p0)的焦点为F,点M在C上,|MF|5,若以MF为直径的圆过点(0,2),则C的标准方程为 A.y24x或y28x B.y22x或y28x C.y24x或y216x D.y22x或y216x,又因为圆过点(0,2),所以yM4,,所以抛物线C的标准方程为y24x或y216x, 故选C.,(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦
8、点的弦有关问题的重要途径. (2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.,跟踪训练1 (1)如果P1,P2,Pn是抛物线C:y24x上的点,它们的横坐标依次为x1,x2,xn,F是抛物线C的焦点,若x1x2xn10,则|P1F|P2F|PnF|等于 A.n10 B.n20 C.2n10 D.2n20,解析抛物线的焦点为(1,0),准线方程为x1,由抛物线的定义,可知|P1F|x11,|P2F|x21, 故|P1F|P2F|PnF|n10.,(2)如图所示,过抛物线y22px(p0)的焦点F的
9、直线交抛物线于点A,B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的标准方程为,解析分别过点A,B作AA1l,BB1l,且垂足分别为A1,B1, 由已知条件|BC|2|BF|,得|BC|2|BB1|, 所以BCB130. 又|AA1|AF|3, 所以|AC|2|AA1|6, 所以|CF|AC|AF|633, 所以F为线段AC的中点.,故抛物线的标准方程为y23x.,题型二抛物线的几何性质,例3(1)过抛物线y24x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,若|AF|3,则AOB的面积为,师生共研,解析设A(x1,y1),B(x2,y2)(y10,y20),如图所
10、示,,|AF|x113,,设AB的方程为x1ty,,得y24ty40.,(2)过点P(2,0)的直线与抛物线C:y24x相交于A,B两点,且|PA| |AB|,则点A到抛物线C的焦点的距离为,解析设A(x1,y1),B(x2,y2),分别过点A,B作直线x2的垂线,垂足分别为点D,E.,在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.,跟踪训练2(1)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|12,P为C的准线上一点,则ABP的面积为 A.18 B.24 C.36 D.48,解析以抛物线
11、的顶点为原点,水平方向为x轴,竖直方向为y轴,建立平面直角坐标系,,题型三直线与抛物线,师生共研,例4设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3. (1)求抛物线的标准方程;,解设抛物线的方程是x22py(p0),A(x1,y1),B(x2,y2), 由抛物线定义可知y1y2p8, 又AB的中点到x轴的距离为3, y1y26,p2, 抛物线的标准方程是x24y.,(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点.连接QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.,解由题意
12、知,直线m的斜率存在,设直线m:ykx6(k0),P(x3,y3),Q(x4,y4),,又Q,F,R三点共线,kQFkFR,又F(0,1),,整理得(x3x4)24(x3x4)22x3x41616x3x40,,(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系. (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x轴的正半轴上),可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式. (3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.,提醒:涉及
13、弦的中点、斜率时一般用“点差法”求解. (4)设AB是过抛物线y22px(p0)焦点F的弦, 若A(x1,y1),B(x2,y2),则,以弦AB为直径的圆与准线相切. 通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.,跟踪训练3(2018抚顺调研)已知抛物线C:x22py(p0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线交点为N. (1)若N在以AB为直径的圆上,求p的值;,解可设AB:ykx1,A(x1,y1),B(x2,y2), 将AB的方程代入抛物线C,得 x22pkx2p0,4p2k28p0,显然方程有两不等实根, 则x1x22
14、pk,x1x22p. ,(2)若ABN面积的最小值为4,求抛物线C的方程.,又N在yAN和yBN上,,N(pk,1).,故抛物线C的方程为x24y.,例(12分)已知抛物线C:ymx2(m0),焦点为F,直线2xy20交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q. (1)求抛物线C的焦点坐标; (2)若抛物线C上有一点R(xR , 2)到焦点F的距离为3,求此时m的值; (3)是否存在实数m,使ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,请说明理由.,答题模板,DATIMUBAN,直线与圆锥曲线问题的求解策略,规范解答,消去y得mx22x2
15、0(m0), 依题意,有(2)24m(2)8m40恒成立, 方程必有两个不等实根. 6分,P是线段AB的中点,,m0,m2. 存在实数m2,使ABQ是以Q为直角顶点的直角三角形. 12分,答题模板 解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x或y的一元二次方程; 第二步:写 出根与系数的关系,并求出0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x1x2,x1x2(或y1y2,y1y2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.,3,课时作业,PART THREE,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,
16、13,14,15,16,1.点M(5,3)到抛物线yax2(a0)的准线的距离为6,那么抛物线的方程是 A.y12x2 B.y12x2或y36x2 C.y36x2,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,2.(2018大连模拟)直线l过抛物线y22px(p0)的焦点,且与该抛物线交于A,B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线的方程是 A.y212x B.y28x C.y26x D.y24x,解析设A(x1,y1),B(x2,y2),根据抛物线的定义可知|AB|(x1x2)p8. 又AB的中点到y轴的距离为2,,所求抛物线的方程为
17、y28x.故选B.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3.(2018辽宁五校联考)抛物线x24y的焦点为F,过点F作斜率为 的直线l与抛物线在y轴右侧的部分相交于点A,过点A作抛物线准线的垂线,垂足为H,则AHF的面积是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由抛物线的定义可得|AF|AH|,,FAH60,故AHF为等边三角形.,4.抛物线C:y22px(p0)的焦点为F,M是抛物线C上的点,若OFM的外接圆与抛物线C的准线相切,且该圆的面积为36,则p等于 A.2 B.4 C.6 D.8,1,2,3,4,
18、5,6,7,8,9,10,11,12,13,14,15,16,解析OFM的外接圆与抛物线C的准线相切, OFM的外接圆的圆心到准线的距离等于圆的半径. 圆的面积为36,圆的半径为6.,5.(2018盘锦模拟)过抛物线y22px(p0)的焦点F且倾斜角为120的直线l与抛 物线在第一、四象限分别交于A,B两点,则 的值等于,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析记抛物线y22px的准线为l, 如图,作AA1l,BB1l,ACBB1,垂足分别是A1,B1,C,,6.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过点F的直线与抛物线C交于A,B两点
19、,若 12,则抛物线C的方程为 A.x28y B.x24y C.y28x D.y24x,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由题意,设抛物线方程为y22px(p0),,消去x得y22pmyp20,显然方程有两个不等实根. 设A(x1,y1),B(x2,y2),则y1y22pm,y1y2p2,,得p4(舍负),即抛物线C的方程为y28x.,解析动点P到点A(0,2)的距离比它到直线l:y4的距离小2, 动点P到点A(0,2)的距离与它到直线y2的距离相等. 根据抛物线的定义
20、可得点P的轨迹为以A(0,2)为焦点,以直线y2为准线的抛物线,其标准方程为x28y.,7.动点P到点A(0,2)的距离比它到直线l:y4的距离小2,则动点P的轨迹方程为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,x28y,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.(2018呼伦贝尔质检)已知F是抛物线y24x的焦点,A,B是抛物线上两点,若AFB是等边三角形,则AFB的边长为_.,解析由题意可知点A,B一定关于x轴对称,且AF,BF与x轴夹角均为30,由于y24x的焦点为(1,0),,1,2,3,4,5,6,7,
21、8,9,10,11,12,13,14,15,16,9.已知直线l:ykxt与圆:x2(y1)21相切,且与抛物线C:x24y交于不同的两点M,N,则实数t的取值范围是_.,t0或t3,解析由题意知k0.因为直线l与圆相切,,由k20,得t0或t0,得t0或t0或t3.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.过抛物线y22px(p0)的焦点F作直线交抛物线于A,B两点,若|AF|2|BF|6,则p_.,4,所以x1x23,x1x29p,所以(x1x2)2(x1x2)24x1x2p2,即18p720,解得p4.,1,2,3,4,5,6,7,8,9,10
22、,11,12,13,14,15,16,11.已知过抛物线y22px(p0)的焦点,斜率为 的直线交抛物线于A(x1,y1),B(x2,y2)(x1x2)两点,且|AB|9.则该抛物线的方程为_.,y28x,从而有4x25pxp20. 由题意知,25p216p29p20,方程必有两个不等实根.,所以p4,从而抛物线方程为y28x.,12.(2018包头模拟)过抛物线C:y24x的焦点F且斜率为k的直线l交抛物线C于A,B两点,且|AB|8. (1)求l的方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13
23、,14,15,16,解易知点F的坐标为(1,0),则直线l的方程为yk(x1), 代入抛物线方程y24x得k2x2(2k24)xk20, 由题意知k0,且(2k24)24k2k216(k21)0, 设A(x1,y1),B(x2,y2),,由抛物线定义知|AB|x1x228,,直线l的方程为y(x1).,(2)若A关于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解由抛物线的对称性知,D点的坐标为(x1,y1),,即y1y24(y1,y2异号), 直线BD的方程为4(x1)(y1y2)y0,恒过点(1,0
24、).,技能提升练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.如图所示,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|4,则线段AB的长为,解析方法一如图所示, 设l与x轴交于点M,过点A作ADl并交l于点D, 由抛物线的定义知,|AD|AF|4, 由F是AC的中点,知|AF|2|MF|2p, 所以2p4,解得p2,所以抛物线的方程为y24x.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1
25、6,代入抛物线方程y24x得,3x210 x30,,故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二如图所示,设l与x轴交于点M, 过点A作ADl并交l于点D, 由抛物线的定义知,|AD|AF|4, 由F是AC的中点,知|AF|2|MF|2p, 所以2p4,解得p2, 所以抛物线的方程为y24x.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法三如图所示,设l与x轴交于点M, 过点A作ADl并交l于点D, 由抛物线的定义知,|AD|AF|4, 由F是AC的中点,知|AF|2|MF|2p, 所以2p4,解得p2, 所以抛物线的方程为y24x.,1,2,3,4,5,6,7,8,9,10,11,12,13,14
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于体育课件教学课件
- 2024年度成都农产品批发市场运营合同
- 2024年度广告发布合同:某品牌广告投放协议
- 2024年建筑工程施工安全管理协议
- 20245G基站建设项目合同
- 2024年定期货物运输协议
- 2024年上海房屋装修工程维修合同
- 2024年度★店铺转让及财务交接合同
- 2024年城市公共艺术装置安装工程分包合同
- 04版房地产买卖与开发合同
- 《中华商业文化》第六章
- 医院玻璃采光顶玻璃雨棚施工方案
- 运筹学-随机规划课件
- 《电阻》说课课件
- 同济外科学课件之颈腰椎退行性疾病
- 杜邦杜邦工程塑料课件
- 砌体工程监理实施细则
- 运输车辆卫生安全检查记录表
- 房建装修修缮工程量清单
- 部编版四年级道德与法治上册第8课《网络新世界》优质课件
- 柴油发电机组应急预案
评论
0/150
提交评论