版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:,观察上表,你获得什么启示?,实验次数越多,频率越接近概率,合作探究,合作学习,让如图的转盘自由转动一次,停止转动后,指针落在红色区域的概率是1/3,以下是实验的方法:,0.3,0.4,0.36,0.35,0.32,(2)填写下表:,(1)一个班级的同学分8组,每组都配一个如图的转盘,3,8,11,14,16,(3)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:,0.3125,0.3625,0.325,0.3438,0.325,合作学习,
2、25,58,78,110,130,(4)根据上面的表格,在下图中画出频率分布折线图,(5)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?,400,320,240,160,80,0,通过大量重复的实验,用一个事件发生的频率来估计这一事件发生的概率,合作学习,频率,实验次数,0.34,0.68,2.3用频率估计概率,议一议:,从上面的实验可以看出,当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,瑞士数学家雅各布伯努利()最早阐明了可以由频率估计概率即:在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事
3、件发生的概率,频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?,大量的实验表明:当重复实验的次数大量增加时,事件发生的频数就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率,因此,我们一般把实验次数最多的频率近似作为该事件的概率,共同归纳,做一做,1.某运动员投篮5次,投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?,2、抽检1000件衬衣,其中不合格的衬衣有2件,由此估计抽1件衬衣合格的概率是多少?,P=499/500,不能,因为只有当重复实验次数大量增加时,事件发生的频率才稳定在概率附近。,则估计油
4、菜籽发芽的概率为,0.9,做一做,4、,例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:,(1)计算表中各个频数. (2)估计该麦种的发芽概率,0.8,0.95,0.95,0.95,0.951,0.952,0.94,0.92,0.9,(3)如果播种500粒该种麦种,种子发芽后的成秧率为90%,问可得到多少棵秧苗?,427,(4)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg?,解:设需麦种x(kg),则粒数为,由题意得,解得:x531(kg) 答:播种3公顷该
5、种小麦,估计约需531kg麦种.,例2、张明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示: 类树苗: B类树苗:,、从表中可以发现,类幼树移植成活的频率在_左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计类幼树移植成活的概率为_,估计类幼树移植成活的概率为 ,0.9,0.9,0.85,A类,11112,根据上表,回答下列问题:,、张明选择类树苗,还是类树苗呢?_,若他的荒山需要10000株树苗,则他实际需要进树苗_株?,1.如果某运动员投一次篮投中的概率为0.8,下列说法对吗?为什么? (1)该运动员投5次篮,必有4次投中. (
6、2)该运动员投100次篮,约有80次投中.,2.对一批西装质量抽检情况如下:,(1)填写表格中次品的概率.,(2)从这批西装中任选一套是次品的概率是多少?,(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?,练一练,3、公路上行驶的一辆客车,车牌号码是奇数的概率是 ;,4、假设抛一枚硬币20次,有8次出现正面,12次出现反面,则出现正面的频率是 ,出现反面的频率是 ,出现正面的概率是 ,出现反面的概率是 ;,5、从1、2、3、4、5,6这6个数字中任取两个数字组成一个两位数,则组成能被4整除的数的概率是 ;,练一练,0.5,0.4,0.6,课堂小结:,频率不等于概率,但通过大量的重复实验,事件发生的频率值将逐渐稳定在相应的概率附近,此时的频率值可用于估计这一事件发生的概率,概率只表示事件发生的可能性的大小,不能说明某种肯定的结果,概率是理论性,频率是实践性,理论应该联系实际,因此我们可以通过大量重复的实验,用一个事件发生的频率来估计这一事件发生的概率,拓展提高,某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑。希望中学要从甲乙两种品牌电脑中各选购一种型号的电脑 (1)写出所有的选购方案; (2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44075-2024纳米技术表面增强拉曼固相基片均匀性测量拉曼成像分析法
- GB/T 30102-2024塑料废弃物的回收和再利用指南
- 开发商与物业公司间物业管理服务协议(3篇)
- 短期合同工劳动协议(2024年修订版)2篇
- 设备安装及技术咨询合同
- 诚信招聘承诺保证书
- 质优砂砾销售合同
- 质量稳定承诺保证书
- 购物无忧的品质保证
- 购销合同中的跨界合作与拓展
- 企业财务会计电子教案 10存货核算4
- 定期体检 预防常见病 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 现代服务业课件
- 生活饮用水、公共场所卫生管理系列国家强制性标准解读答案-2024年全国疾控系统“大学习”活动
- 教师成长案例数字赋能 创新教学 启智未来
- 2024-2030年中国海洋工程行业市场发展分析及前景趋势与投资前景研究报告
- 消化内科五年发展规划
- 多水源联合调度技术
- 2024市场场地租赁保证金合同范本
- 中学生网络安全教育主题班会
- 大班绘本阅读《小老鼠的探险日记》教案含反思
评论
0/150
提交评论