版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、华师大版八年级数学下函数及其图像知识点归纳华师大版八年级数学下函数及其图像知识点归纳一 .变量与函数1 .函数的定义 :一般的 ,在某个变化过程中有两个变量x 与 y,对于 x 的每一个数值y 都有唯一的值与之对应,我们说 x 叫做自变量 ,y 叫做因变量 ,y 叫做 x 的函数。2.自变量的取值范围:(1) 能够使函数有意义的自变量的取值全体。(2) 确定函数自变量的取值范围要注意以下两点: 一就是使自变量所在的代数式有意义; 二就是使函数在实际问题中有实际意义。(3) 不同函数关系式自变量取值范围的确定:函数关系式为整式时自变量的取值范围就是全体实数。函数关系式为分式时自变量的取值范围就是
2、使分母不为零的全体实数。函数关系式为二次根式时自变量的取值范围就是使被开方数大于或等于零的全体实数。3 .函数值 :当自变量取某一数值时对应的函数值。这里有三种类型的问题:(1) 当已知自变量的值求函数值就就是求代数式的值。(2) 当已知函数值求自变量的值就就是解方程。(3) 当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就就是解不等式或不等式组。二 .平面直角坐标系 :1.各象限内点的坐标的特征 :(1) 点 p(x,y) 在第一象限 x 0,y0 、(2) 点 p(x,y) 在第二象限 x 0,y0 、(3) 点 p(x,y) 在第三象限 x 0,y0(4) 点 p(x,y) 在
3、第四象限 x 0,y0 、2 .坐标轴上的点的坐标的特征:(1) 点 p(x,y) 在 x 轴上 x为任意实数 ,y=0(2) 点 p(x,y) 在 y 轴上 x=0,y 为任意实数3 .关于 x 轴,y 轴 ,原点对称的点的坐标的特征:(1)点 p(x,y) 关于 x 轴对称的点的坐标为(x,-y) 、(2)点 p(x,y) 关于 y 轴对称的点的坐标为(-x,y) 、(3)点 p(x,y) 关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点 p(x,y) 在第一、三象限夹角平分在线x=y 、(2) 点 p(x,y) 在第二 ,四象限夹角平分在线 x
4、+y=05.与坐标轴平行的直线上的点的坐标的特征:(1) 位于平行于 x 轴的直线上的所有点的纵坐标相同。(2) 位于平行于 y 轴的直线上的所有点的横坐标相同。6.点到坐标轴及原点的距离 :(1) 点 p(x,y) 到轴的距离为 y、(2) 点 p(x,y) 到 y 轴的距离为 x、22(3) 点p(x,y) 到原点的距离为xy(4) 同在 x 轴上的两点A(x1,0) 与(5) 同在 y 轴上的两点C(0,y1) 与B(x2,0) 之间的距离为 D(0,y2) 之间的距离为AB=|x1-x2|CD=|y1-y2|三 .函数的图像函数图像上的点与其解析式的关系1.函数图像上任意一点p x,y
5、 中的 x 、 y 满足函数关系式,满足函数关系式的一对对应值x,y 都在函数华师大版八年级数学下函数及其图像知识点归纳的图像上。2.判断点 p x,y 就是否在函数图像上的方法,将这个点的坐标 x,y 代入函数关系式,如果满足函数关系式 ,那么这个点就在函数的图像上,如果不满足函数关系式 ,那么 ,这个点就不在函数的图像上。四 .一次函数(一) 一次函数的定义1.定义 :含有自变量的式子为一次整式,即形如式子y kx+b( 其中k 与b 为常数,k 叫0)做一次函数。正比例函数 :在一次函数y=kx+b 中如果 b=0 即变为y=kx( 其中 k0),这样的函数叫做正比例函数。2.注意 :(
6、1) 由一次函数与正比例函数的定义可知; 函数就是一次函数 解析式为y kx+b 的形式。 函数就是正比例函数 解析式为y=kx 的形式。(2) 一次函数解析式 y=kx+b 的结构特征 : k 0 x 的次数就是1 常数b 为任意实数(3) 正比例函数解析式 y=kx 的结构特征 k 0 x 的次数就是1 常数b=03.说明 :在 y=kx+b 中若 k=0 则 y=b b 为常数这样的函数叫做常数函数4.正比例函数与一次函数的关系:,它不就是一次函数。正比例函数就是一次函数的特例,一次函数包含正比例函数。第 2/6 页一次函数y=kx+b, 当 b=0 时为正比例函数一次函数y=kx+b,
7、 当 b0时一般的一次函数(二) 一次函数的图像1.一次函数图像的形状:一次函数 y=kx+b 的图像就是一条直线 ,通常称为直线 y=kx+b 正比例函数 y=kx 的图像也就是一条直线 ,称为直线 y=kx 2.一次函数图像的主要特点 :一次函数y=kx+b 的图像经过点0,b的直线 ,正比例函数y=kx+b 的图像就是经过原点0,0的直线注意 :点 0,b 就是直线 y=kx+b 与 y 轴的交点。 当 b 0 时 ,此时交点在 y 轴的正半轴上 , 当 b 0 时 ,此时交点在 y 轴的负半轴上 , 当 b=0 时 ,此时交点在原点 ,这时的一次函数就就是正比例函数。3.一次函数图像的
8、画法:,即两点确定一条直线 ,所以画一次函数的图像时,只要先描出两根据两点能画一条直线并且只能画一条直线点 ,在连成直线即可。那么 ,先描出哪两点比较好呢?选两点应以计算与描点简单为原则,一般来说 ,当 b0时 ,一般的一次函数 y=kx+b 的图像 ,应选取b,0 ;当 b=0 时,画正比例函数 y=kx 的图像 ,通常取 0,0 与 k22 1,k两点 ,个别情况下可以做些变通,例如画函数y=x的图像 ,可以取 0,0与 1,两点 ,33 它与两个坐标轴的交点0,b 与 -也可以取0,0与 3,2两点。4.直线 y=kx+b 与坐标轴的交点(1)令 x=0, 则 y=b 所以直线 y=kx
9、+b 与 y 轴的交点坐标为0,b (2)令 y=0, 则 kx+b=0所以 x=-b kb,0注意 :此时直线 y=kx+b 与 x 轴 ,y 轴围成的三角形面积k 所以直线 y=kx+b 与 x 轴的交点坐标为-S=1b - b 2k5.两直线在直角坐标系内的位置关系:(1) 两直线的解析式中当k 相同时 ,其位置关系就是平行,其中一条直线可以瞧作就是另一条平移得到的,平移规律就是 “左减右加 ,上加下减 ”(2) 两直线的解析式中当b 相同时 ,其位置关系就是相交,交点坐标为 0,b、第 3/6 页(三)一次函数的性质1.正比例函数的性质(1) 当 k 0 时,图像经过第一、三象限 ,y
10、 随 x 的增大而增大 ,直线 y=kx 从左到右上升。(2) 当 k 0 时,图像经过第二、四象限 ,y 随 x 的增大而减小 ,直线 y=kx 从左到右下降。2.一次函数 y=kx+b 的性质(1) 当 k 0 时,直线 y=kx+b 从左到右上升,此时 y 随 x 的增大而增大。华师大版八年级数学下函数及其图像知识点归纳(2) 当 k 0 时,直线 y=kx+b 从左到右下降 ,此时 y 随 x 的增大而减小。(3) 当 b 0 时 ,直线 y=kx+b 与 y 轴正半轴相交。(4) 当 b 0 时 ,直线 y=kx+b 与 y 轴负半轴相交。3.直线 y=kx+b 的位置与k、 b 的
11、符号之间的关系直线 y=kx+b 的位置就是由k 与 b 的符号决定的,其中 k 决定直线从左到右呈上升趋势还就是下降趋势,b 决定直线与y 轴交点的位置就是在y 轴的正半轴 ,还就是负半轴,还就是原点。k 与 b 综合起来决定直线y=kx+b 在直角坐标系中的位置共有六种情况:当 k 0,b0 时 ,直线经过第一、二、三象限,不经过第四象限;当 k 0,b0 时 ,直线经过第一、三、四象限,不经过第二象限;当 k 0, b 0 时 ,直线经过第一、二、四象限,不经过第三象限;当 k 0,b0 时 ,直线经过第二、三、四象限,不经过第一象限;当 k 0,b=0 时 ,直线经过第一、三象限;当
12、k 0,b=0 时 ,直线经过第二、四象限。(四)正比例函数与一次函数解析式的确定1.确定一个正比例函数就就是要确定正比例函数解析式y=kx k0中的常数k;确定一个一次函数需要确定一次函数解析式一般形式y=kx+b k0中的常数k 与 b,解这类问题的一般方法就是待定系数法。2.待定系数法:先设出待求函数关系式其中含有未知的系数,再根据已知条件列出方程或方程组到所求结果的方法,叫做待定系数法。其中的未知系数也称待定系数,如正比例函数y=kxy=kx+b 中的 k 与 b 都就是待确定的系数。,求出未知系数 ,从而得中的 k, 一次函数3.用待定系数法求函数解析式的一般步骤:(1) 设出含有待
13、定系数的解析式;(2) 把已知条件自变量与函数的对应值代入解析式,得到关于待定系数的方程或方程组;(3) 解方程或方程组 ,求出待定系数 ;(4) 将求得的待定系数的值代回所设的解析式。式设注意 :通常正比例函数解析式设y=kx, 只有一个待定系数y=kx+b, 其中有两个待定系数k 与 b,因而需要两对x 与五 .反比例函数(一)反比例函数定义1.一般的 ,函数 y=k-1 k 就是常数 ,k 0叫做反比例函数式 ,其中 k 叫做比例系数。第 4/6 页k,一般只需一对x 与 y 的对应值即可;一次函数解析y 的对应值 ,才能求出k 与 b 的值。,反比例函数的解析式也可以写成y=kx 的形
14、 x2.反比例函数解析式的主要特征:(1) 等号左边就是函数y,右边就是一个分式,分子就是不为零的常数k,分母中含有自变量x,且x 的指数就是1,若写成 y=kx 的形式 ,则 x 的指数就是-1。(2) 比例系数 “ k就0”是反比例函数定义的重要组成部分。(3) 自变量 x 的取值范围就是x0的一切实数。(二)反比例函数的图像反比例函数的图像就是双曲线,它有两个分支 ,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点成中心对称。由于反比例函数中自变量x0,函数 y0,所以它的图像与 x 轴与 y 轴都没有交点 ,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。(三)反比例
15、函数的性质1.当 k 0 时 ,图像在第一、三象限,在每个象限内 ,曲线从左到右下降,也就就是在每个象限内y 随 x 的增大而减小。2.当 k 0 时 ,图像在第二、四象限,在每个象限内 ,曲线从左到右上升,也就就是在每个象限内y 随 x 的增大而增大。(四)反比例函数解析式的确定,由于反比例函数y=-1k 中只有一个待定系数 ,因此只需要一对x 与 yx确定解析式的方法仍就是待定系数法的对应值或图像上一个点的坐标,即可求出 k的值 ,从而确定其解析式。(五) “反比例关系 ”与 “反比例函数 ”的区别与联系反比例关系就是小学学过的概念:如果 xy=k k 就是常数 k0 ,那么 x 与 y
16、这两个量成反比例关系,这里 x与 y 既可以代表单独的一个字母也可以代表多项式或单项式,例如 y+3与 x 成反比例则有 y+3=成反比例 ,则 y=例关系。k,y 与 x2xkk, 成反比例关系不一定就是反比例函数,但就是反比例函数y= 中的两个变量必定成反比xx2第 5/6 页华师大版八年级数学下函数及其图像知识点归纳(六 )反比例函数y=k k0中的比例系数k 的几何意义x11S 矩形 =|k|。221. 如图 ,过双曲线上一点作x 轴、 y 轴的垂线PM 、 PN,所得矩形PMON面积为|k|。2.连结PO,则 S POM=六 .函数的应用1.利用图像比较两个函数值的大小在同一直角坐标系中的两个函数图像,如果其中一个函数的图像在另一个函数图像的上方,则该函数值就比另一个函数值大,若在下方 ,则该函数值就比另一个函数值小,而其交点的横坐标就就是分界点。2.两个一次函数图像的交点与二元一次方程组的关系如果两个一次函数的图像相交,则交点坐标必定同时满足两个函数解析式,故交点坐标就是有两个函数解析式组成的二元一次方程组的解。3.一次函数与方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十三热学第3讲热力学定律练习含答案
- 春运期间全程出行安全手册
- 《变压器的简单介绍》课件
- 九年级历史上册 第6课 古代世界的战争与征服教案1 新人教版
- 2024-2025学年高中历史 第二单元 古代历史的变革(下)第4课 商鞅变法与秦的强盛(1)教学教案 岳麓版选修1
- 2024年秋八年级物理上册 第一章 第4节 测量平均速度教案 (新版)新人教版
- 高中政治 第三专题 联邦制、两党制、三权分立:以美国为例 第四框题 美国的利益集团教案 新人教版选修3
- 2024年五年级语文上册 第二单元 语文园地二配套教案 新人教版
- 2023六年级数学上册 七 负数的初步认识第1课时 认识负数教案 西师大版
- 租赁工业吊扇合同范本(2篇)
- 高考语文作文素材人物速递——苏炳添课件18张
- 蛋鸡养殖场管理制度管理办法
- 洗涤有限公司各生产班组工作流程及工作要求
- 学习共同体建设-精
- 钢板桩及支撑施工方案DOC
- 完整解读新版《化学》新课标2022年《义务教育化学课程标准(2022年版)》PPT课件
- 民法典关于监护的规定解读
- 便携式气体检测仪使用方法(课堂PPT)
- EN779-2012一般通风过滤器——过滤性能测定(中文版)
- 幼儿园教研主题30篇
- 应用随机过程PPT课件
评论
0/150
提交评论