




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数、导数及其应用2.2函数的单调性【高考目标定位】一、考纲点击1理解函数的单调性、最大值、最小值及其几何意义;2会运用函数图象理解和研究函数的单调性、最值。二、热点、难点提示1函数的单调性与最值是函数最重要的两个性质,在每年的高考中均有重要体现。常见问题有求单调区间,判断函数的单调性,求函数的最值或求某变量的取值范围等。2在高考试题中三种题型都有可能出现,选择题、填空题题较多。【考纲知识梳理】一、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1 x2时,都有f(x1)f(x2),那么就说函数f(
2、x)在区间D上是增函数当x1f(x2),那么就说函数f(x)在区间D上是增函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间。注:单调区间是定义域的子区间二、函数的最值前提设函数f(x)的定义域为I,如果存在实数M满足条件 对于任意xI,都有f(x)M 存在xI,使得f(x)=M 对于任意xI,都有f(x)M 存在xI,使得f(x)=M结论M为最大值M为最小值注:函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,
3、但其最值不一定存在。【热点、难点精析】一、函数单调性的判定1、用定义证明函数单调性的一般步骤(1)取值:即设x1、x2是该区间内的任意两个值,且x10且2x0 的定义域为 判断在上是增函数,下证明之:1分设任2分3分 x2x10,2x10,2x20则4分用数学归纳法易证 证略. 12分二、复合函数的单调性1求复合函数y=f(g(x)的单调区间的步骤(1)确定定义域;(2)将复合函数分解成基本初等函数:y=f(u),u=g(x).(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y=f(g(x)为增函数;若一增一减,则y=f(g(x)为减函数,即“同增异减”。2例题解析例1判断
4、函数y=在定义域上的单调性分析:确定函数的定义域判断函数y=与u=x-1的单调性复合函数的单调性解答:y=,例2(1)求函数的单调区间;(2)已知若试确定的单调区间和单调性。解:(1)函数的定义域为,分解基本函数为、显然在上是单调递减的,而在上分别是单调递减和单调递增的。根据复合函数的单调性的规则:所以函数在上分别单调递增、单调递减。(2)解法一:函数的定义域为R,分解基本函数为和。显然在上是单调递减的,上单调递增;而在上分别是单调递增和单调递减的。且,根据复合函数的单调性的规则:所以函数的单调增区间为;单调减区间为。解法二:,令 ,得或,令 ,或单调增区间为;单调减区间为。三、抽象函数的单调
5、性及最值例1已知f(x)是定义在R上的增函数,对xR有f(x)0,且f(5)=1,设F(x)= f(x)+,讨论F (x)的单调性,并证明你的结论解析:这是抽角函数的单调性问题,应该用单调性定义解决。在R上任取x1、x2,设x1x2,f(x2)= f(x1), f(x)是R上的增函数,且f(10)=1,当x10时0 f(x)10时f(x)1; 若x1x25,则0f(x1)f(x2)1, 0 f(x1)f(x2)1,0, F (x2)x15,则f(x2)f(x1)1 ,f(x1)f(x2)10 F(x2) F (x1)综上,F (x)在(,5)为减函数,在(5,+)为增函数注:对于抽象函数的单调
6、性的判断仍然要紧扣单调性的定义,结合题目中所给性质和相应的条件,对任意x1、x2在所给区间内比较f(x2)-f(x1)与0的大小,或f(x1)/ f(x2)与大小。有时根据需要,需作适当的变形:如例2已知定义在上的函数同时满足下列三个条件: ; 对任意 都有;.(1)求、的值; (2)证明:函数在上为减函数; (3)解关于x的不等式 .(1)解: (3)不等式等价于,解得 .【感悟高考真题】1(2009山东卷文)已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则( )A. B. C. D. 答案 D解析 因为满足,所以,所以函数是以8为周期的周期函数, 则,又因为在R上是奇函数, ,得
7、,而由得,又因为在区间0,2上是增函数,所以,所以,即,故选D2.(2009年广东卷文)函数的单调递增区间是 A. B.(0,3) C.(1,4) D. 【答案】D【解析】,令,解得,故选D3. (2009湖南卷文)设函数在内有定义,对于给定的正数K,定义函数 取函数。当=时,函数的单调递增区间为【 C 】A B C D 解: 函数,作图易知,故在上是单调递增的,选C. 4.(2009福建卷理)下列函数中,满足“对任意,(0,),当的是A= B. = C .= D 【答案】:A解析依题意可得函数应在上单调递减,故由选项可得A正确。5. (2010重庆理数)(5) 函数的图象A. 关于原点对称
8、B. 关于直线y=x对称 C. 关于x轴对称 D. 关于y轴对称解析: 是偶函数,图像关于y轴对称6. (2010北京文数)(6)给定函数,期中在区间(0,1)上单调递减的函数序号是(A) (B) (C) (D)答案:B7. (2010江苏卷)11、已知函数,则满足不等式的x的范围是_。解析 考查分段函数的单调性。8. (2010安徽文数)20.(本小题满分12分)设函数,求函数的单调区间与极值。【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解决问题的能力.【解题指导】(1)对函数求导,对导函数用辅助角公式变形,利用导数等于0得极值点,通过列表的方法
9、考查极值点的两侧导数的正负,判断区间的单调性,求极值.【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点.【考点精题精练】一、选择题1同时具有性质:“最小正周期为;图象关于直线对称;在上是增函数”的一个函数是 A B C D答案:C解析:逐一排除即可2(北京市西城外语学校2010届高三测试)函数的一个单调增区间是( )A. B. C. D. 3若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,4函数f(x)=在区间(2,)上单调
10、递增,则实数a的取值范围是( )A(0,)B( ,)C(2,)D(,1)(1,)5已知函数f(x)在区间a,b上单调,且f(a)f(b)0,则方程f(x)=0在区间a,b内( )A至少有一实根 B至多有一实根 C没有实根 D必有唯一的实根6已知函数f(x)=82xx2,如果g(x)=f( 2x2 ),那么函数g(x)( ) A在区间(1,0)上是减函数 B在区间(0,1)上是减函数 C在区间(2,0)上是增函数 D在区间(0,2)上是增函数7已知函数f(x)是R上的增函数,A(0,1)、B(3,1)是其图象上的两点,那么不等式 |f(x1)|1的解集的补集是( ) A(1,2) B(1,4)
11、C(,1)4,) D(,1)2,)8已知定义域为R的函数f(x)在区间(,5)上单调递减,对任意实数t,都有f(5t)f(5t),那么下列式子一定成立的是( )Af(1)f(9)f(13)Bf(13)f(9)f(1)Cf(9)f(1)f(13)Df(13)f(1)f(9)9函数的递增区间依次是( )ABCD10已知函数在区间上是减函数,则实数的取值范围是( )Aa3 Ba3Ca5 Da311已知f(x)在区间(,)上是增函数,a、bR且ab0,则下列不等式中正确的是( )Af(a)f(b)f(a)f(b)Bf(a)f(b)f(a)f(b)Cf(a)f(b)f(a)f(b)Df(a)f(b)f(
12、a)f(b)12定义在R上的函数y=f(x)在(,2)上是增函数,且y=f(x2)图象的对称轴是x=0,则( )Af(1)f(3)Bf (0)f(3) Cf (1)=f (3) Df(2)f(3)二、填空题1、(09陆慕高级中学测试) 函数的单调减区间是(,2) 2、(09长沙市一中月考) 函数在上的最大值为15 3、设是上的减函数,则的单调递减区间为 .4、函数f(x) = ax24(a1)x3在2,上递减,则a的取值范围是_ 三、解答题1、已知f(x)是定义在(2,2)上的减函数,并且f(m1)f(12m)0,求实数m的取值范围解析: f(x)在(2,2)上是减函数由f(m1)f(12m)0,得f(m1)f(12m) 解得,m的取值范围是()2、已知函数f(x)=,x1,(1)当a=时,求函数f(x)的最小值;(2)若对任意x1,f(x)0恒成立,试求实数a的取值范围解析: (1)当a=时,f(x)=x2,x1,)设x2x11,则f(x2)f(x1)=x2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑工程勘察设计合同 标准版模板
- 自家房屋转租合同
- 2025有关权益保障反担保合同范本
- 电子设备购销合同
- 个人购房合同范文
- 2025年度劳动合同范本模板
- 铲车出售协议书模板
- 房产收取钥匙协议书
- 2025年03月河北唐山市曹妃甸区公开选聘高层次专业技术人员15名笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月扬州市广陵区事业单位工作人员35人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 小学四年级体育《快速跑》教案
- 新生儿乳糜胸的相关
- 产后病(中医妇科学)
- 道路纵断面设计
- 1.3.1 三角函数的周期性课件
- 智能感知系统布局
- 综合能力测试真题及答案
- 幼儿园中班创意美术《我运动了》课件
- 自动焊锡机烙铁头更换记录表
- 广东省省级政务信息化服务预算编制标准(运维服务分册)
- 汽车维修公务车辆定点维修车辆保养投标方案
评论
0/150
提交评论