版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第10章 回顾与复习,轴对称,如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。,第一个结论:,这条直线叫这个图形的对称轴。,我们再看图10.1.3中的两组图形,它们有什么共同点?,像这样,把一个图形沿着某一条直线对折过去,如果 它能够与另一个图形重合,那么就说这两个图形成轴对 称,这条直线就是对称轴,两个图形中的对应点(即两 个图形重合时互相重合的点)叫做对称点,议一议,D D1,第二个结论:,成轴对称与轴对称图形的基本特征,显然,轴对称图形(或成轴对称的两个图形)沿对称轴对折后的两部分是完全重合的,所以,轴对称图形(或成轴对称的两个图形)的对应线段(对折
2、后 重合的线段)相等,对应角(对折后重合的角)相等。,画图形的对称轴的方法:,(1)找出轴对称图形的任意一组对称点。 (2)连结对称点。 (3)画出对称点所连线段的垂直平分线, 就是该图形的对称轴,小 结,归纳总结,通过上面的操作,同学们能否总结一下如何画已知图形关于某条直线的对称图形?,第一步:找出图形中的特殊点; 第二步:逐个画出特殊点的对称点; 第三步:顺次连结对称点.,平移的定义:,平面图形在它所在的平面上的平行移动,简称为平移。,2. 平移不改变图形的形状、大小,只改变图 形的位置.,平移的基本性质,1.图形上各点沿同一方向移动相同的距离,小结,请看图片,平移是由什么决定的?,平移的
3、方向和平移的距离是决定平移的两个要素。,平移的两个要素:,ABC平移的方向就是由点B到点B的方向,平移的距离就是线段B B 的长度。,平移的方向是一个点到它对应点的方向,即对应点确定的射线的方向 平移的距离是对应点间的线段的长度。,平移的特征:,A,B,D,E,F,C,2.平移后对应点所连的线段平行(或在同一条直线上)并且相等,1.平移后对应线段平行(或在同一直线上)且相等,对应角相等。,这个定点O称为旋转中心,旋转角,旋转中心,像这样,把一个平面图形绕着某一定点按某个方向转动一定的角度,这样的图形运动就叫做旋转,A,o,B,转动的角AOB 称为旋转角,图形旋转的三要素: 旋转中心 旋转角度
4、旋转方向,旋转方向:顺时针,即: 对应线段相等,观察下列旋转,探索对应元素的关系,0,A,B,C,A,B,C,对应角相等,还有相等的线段和角吗?,即: 对应点到旋转中心的距离相等,即: 每一点都绕旋转中心按同一方向转过相等的角度,旋转的特征,定义: 把一个图形绕着某一定点旋转一定角度后能与自身重合的图形就称为旋转对称图形。,2、旋转对称图形是一个具有旋转特征的特殊图形。,3、旋转的方向不用考虑! 分析:若顺时针或逆时针旋转一定角度,该图形都能与原图形重合,则可以淡化旋转方向。,1、0旋转角360.,请注意:,在平面内,一个图形绕中心旋转180后能与自身重合,那么这个图形叫做中心对称图形,这个中
5、心叫做它的对称中心。,注意: 中心对称图形是旋转角度为180度的旋转对称图形。,像这样把一个图形绕着某一点旋转180度,如果它能够和 另一个图形重合,那么,我们就说这两个图形关于这个点成中心对称,这个点叫做对称中心,这两个图形中的对应点,叫做关于中心的对称点.,中心对称,完成P127填空练习,观察:C.A.E三点的位置关系怎样?线段AC.AE的大小关系呢?,答:C.A.E三点在同一条直线上;AC,AE为对应线段,AC=AE,结论:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.,A,A,B,B,O,2、线段的中心对称线段的作法,A,O,A,1、点的中心对称点的作法
6、,灵活运用,体会内涵,以点O为对称中心,作出点A的对称点A;,以点O为对称中心,作出线段AB的对称线段点AB 线段AB就是所求的线段,点A即为所求的点,应用拓展,3.如图,选择点O为对称中心,画出与 ABC关于点O对称的ABC.,解:,A,C,B,ABC即为所求的三角形。,试一试: 如图,已知ABC与ABC中心对称,求出它们的对称中心O,解法一:根据观察,B、B应是对应点,连结BB,用刻度尺找出BB的中点O,则点O即为所求(如图),O,O,解法二:根据观察,B、B及C、C 应分别是两组对应点,连结BB 、CC ,它们相交于点O,则点O即为所求(如图),回顾小结:,1、本节主要学了哪几种图形:,2、图形的三种基本的运动,轴对称、旋转、平移,注意在数学中常常
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养猪场建设施工合同
- 办公室管理革命:6S管理技巧
- 融资市场动态分析报告
- 健身房财务部长聘用合同
- 2024年设计合同标的和服务内容
- 2025年度消防安全设施设备采购与安装合同3篇
- 集市客户服务集贸市场管理办法
- 信息技术主管聘用合同
- 娱乐设施屋面防水工程合同
- 医疗行业风险控制手册
- 林西森腾矿业有限责任公司林西县银洞子沟铅锌矿2022年度矿山地质环境治理计划书
- 招聘服务协议
- 足球《颠球》课件
- 医院春节期间值班制度
- 商业模式画布模板-DOC格式
- 国开电大2022年春季期末考试《物流管理定量分析方法》试题(试卷代号2320)
- 体外培育牛黄介绍呼吸科优秀
- 统编版人教版二年级语文下册二下语文日积月累及古诗
- 学院中层正副职民主测评表
- 船员《保安职责》Z08考试复习题库(汇总版)
- 展览建筑设计规范2018
评论
0/150
提交评论