222反证法ppt课件_第1页
222反证法ppt课件_第2页
222反证法ppt课件_第3页
222反证法ppt课件_第4页
222反证法ppt课件_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.2直接证明与间接证明-反证法,1,教学目标,结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点. 教学重点:会用反证法证明问题;了解反证法的思考过程. 教学难点:根据问题的特点,选择适当的证明方法.,2,经过证明的结论,一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法,特点:执果索因.,用框图表示分析法,3,反证法: 假设命题结论的反面成立,经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的

2、证明方法叫反证法。,反证法的思维方法: 正难则反,4,反证法的基本步骤: (1)假设命题结论不成立,即假设结论的反面成-立; (2)从这个假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,从而肯定命题的结 -论正确,归缪矛盾: (1)与已知条件矛盾; (2)与已有公理、定理、定义矛盾; (3)自相矛盾。,5,应用反证法的情形: (1)直接证明困难; (2)需分成很多类进行讨论 (3)结论为“至少”、“至多”、“有无穷多个” -类命题; (4)结论为 “唯一”类命题;,6,例1:用反证法证明: 如果ab0,那么,7,例2 已知a0,证明x的方程ax=b有且只有一个根。,8,例3 已知直线a,b和平面,如果, ,且a/b,求证:a/.,9,例4 求证: 是无理数。,10,说明:常用的正面叙述词语及其否定:,不等于,小于或 等于(),大于或 等于(),不是,不都是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论