




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、10.2排列与组合,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,基础知识自主学习,1.排列与组合的概念,知识梳理,一定的顺序,2.排列数与组合数,(1)排列数的定义:从n个不同元素中取出m(mn)个元素的_ 的个数叫作从n个不同元素中取出m个元素的排列数,用 表示. (2)组合数的定义:从n个不同元素中取出m(mn)个元素的_ 的个数,叫作从n个不同元素中取出m个元素的组合数,用 表示.,所有不同,排列,组合,所有不同,3.排列数、组合数的公式及性质,n(n1)(n2)(nm1),1,n!,判断下列结论是否正确(请在括号中打“”或“”) (1)所有元素完全相同的两个排列为相同排列.
2、() (2)一个组合中取出的元素讲究元素的先后顺序.() (3)两个组合相同的充要条件是其中的元素完全相同.() (4)(n1)!n!nn!.() (5) () (6) (),考点自测,1.(2016四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数 A.24 B.48C.60 D.72,答案,解析,由题可知,五位数要为奇数,则个位数只能是1,3,5; 分为两步:先从1,3,5三个数中选一个作为个位数有 种情况, 再将剩下的4个数字排列得到 种情况, 则满足条件的五位数有 72(个).故选D.,2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为 A.144 B.
3、120 C.72 D.24,答案,解析,“插空法”,先排3个空位,形成4个空隙供3人选择就座, 因此任何两人不相邻的坐法种数为 43224.,3.(教材改编)用数字1,2,3,4,5组成的无重复数字的四位数,其中偶数的个数为 A.8 B.24 C.48 D.120,答案,解析,末位数字排法有 种, 其他位置排法有 种, 共有 48(种).,4.某高三毕业班有40人,同学这间两两彼此给对方写一条毕业留言,那么全班共写了_条毕业留言.(用数字作答),答案,解析,1560,依题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了 40391 560(条)留言.,5.某班级
4、要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有_种.,解析,答案,14,题型分类深度剖析,题型一排列问题,例1(1)3名男生,4名女生,选其中5人排成一排,则有_种不同的排法.,(2)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_种.,2520,当最左端排甲时,不同的排法共有 种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有 种.故不同的排法共有 12096216(种).,216,答案,解析,答案,解析,引申探究 1.本例(1)中若将条件“选其中5人排成一排”改为“排成前后两排,前排3人,后排4人”
5、,其他条件不变,则有多少种不同的排法?,前排3人,后排4人,相当于排成一排,共有 5 040(种)排法.,解答,2.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男、女各站在一起”,其他条件不变,则有多少种不同的排法?,解答,相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有 种排法;女生必须站在一起,是女生的全排列,有 种排法; 全体男生、女生各视为一个元素,有 种排法. 根据分步乘法计数原理,共有 288(种)排法.,3.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男生不能站在一起”,其他条件不变,则有多少种不同的排法?,解答,不相邻问题(插空法):
6、先安排女生共有 种排法, 男生在4个女生隔成的5个空中安排共有 种排法, 故共有 1 440(种)排法.,4.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,甲不站排头也不站排尾”,其他条件不变,则有多少种不同的排法?,解答,先安排甲,从除去排头和排尾的5个位置中安排甲,有 5(种)排法;再安排其他人,有 720(种)排法. 所以共有 3 600(种)排法.,排列应用问题的分类与解法 (1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法. (2)对
7、相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.,思维升华,跟踪训练1由0,1,2,3,4,5这六个数字组成的无重复数字的自然数. 求:(1)有多少个含2,3,但它们不相邻的五位数?,解答,(2)有多少个含数字1,2,3,且必须按由大到小顺序排列的六位数?,解答,题型二组合问题,例2(1)若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是 A.60 B.63C.65 D.66,解析,答案,因为1,2,3,9中共有4个不同的偶数和5个不同的奇数, 要使和为偶数,则4个数全为奇数或全为偶数或2个奇数和2个偶数,故有
8、66(种)不同的取法.,(2)要从12人中选出5人去参加一项活动,A,B,C三人必须入选,则有_种不同选法.,答案,解析,36,只需从A,B,C之外的9人中选择2人,即有 36(种)不同的选法.,引申探究 1.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人都不能入选”,其他条件不变,则不同的选法有多少种?,解答,由A,B,C三人都不能入选只需从余下9人中选择5人, 即有 126(种)不同的选法.,2.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人只有一人入选”,其他条件不变,则不同的选法有多少种?,解答,3.本例(2)中若将条件“A,B,C三人必须入选”
9、改为“A,B,C三人至少一人入选”,其他条件不变,则不同的选法有多少种?,解答,组合问题常有以下两类题型变化 (1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取. (2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.,思维升华,跟踪训练2某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种. (1)其中某一种假货必须在内,不
10、同的取法有多少种?,解答,某一种假货必须在内的不同取法有561种.,(2)其中某一种假货不能在内,不同的取法有多少种?,从34种可选商品中,选取3种, 某一种假货不能在内的不同取法有5 984种.,解答,(3)恰有2种假货在内,不同的取法有多少种?,解答,从20种真货中选取1件,从15种假货中选取2件有 2 100(种). 恰有2种假货在内的不同的取法有2 100种.,(4)至少有2种假货在内,不同的取法有多少种?,解答,(5)至多有2种假货在内,不同的取法有多少种?,解答,题型三排列与组合问题的综合应用,命题点1相邻问题 例3(2017济南调研)一排9个座位坐了3个三口之家,若每家人坐在一起
11、,则不同的坐法种数为 A.33! B.3(3!)3C.(3!)4 D.9!,答案,解析,把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种坐法.,命题点2相间问题 例4某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是_.,答案,解析,120,先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“小品1歌舞1小品2相声”,有 36(种)安排方法; 同理,第三种情况也有36种安排方法, 对于第二种情况
12、,三个节目形成4个空,其形式为“小品1相声小品2”,有 48(种)安排方法. 由分类加法计数原理知共有363648120(种)安排方法.,命题点3特殊元素(位置)问题 例5(2016郑州检测)从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有_个.,答案,解析,51,排列与组合综合问题的常见类型及解题策略 (1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列. (2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑
13、法有同等作用. (3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置. (4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类加法计数原理求出排列总数.,思维升华,跟踪训练3(1)(2016山西四校联考三)有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为,答案,解析,A.150 B.180C.200 D.280,分两类:一类,3个班分派的毕业生人数分别为2,2,1, 则有 90(种)分派方法; 另一类,3个班分派的毕业生人数分别为1,1,3, 则有 60(种)分派方法, 所以不同分派
14、方法种数为9060150,故选A.,(2)将甲、乙、丙、丁、戊五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,甲不能被保送到北大,则不同的保送方案共有 A.150种 B.114种C.100种 D.72种,答案,解析,先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1或者3,1,1,所以共有 25(种)分组方法.因为甲不能被保送到北大,所以有甲的那组只有上海交大和浙大两个选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有254100(种).,典例有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取
15、法有_种.,排列、组合问题,现场纠错系列14,错解展示,现场纠错,纠错心得,(1)解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件. (2)解题时要细心、周全,做到不重不漏.,解析先从一等品中取1个,有 种取法;再从余下的19个零件中任取2个,有C种不同取法,共有 2 736(种)不同取法. 答案2736,返回,解析方法一将“至少有1个是一等品的不同取法”分三类: “恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”, 由分类加法计数原理,知有CCCCC1 136(种). 方法二考虑其对立事件“3个都是二等品”,用间接法:CC1
16、136(种). 答案1136,返回,课时作业,1.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为 A.48 B.36 C.24 D.12,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,2.(2016黄山月考)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为 A.16 B.18 C.24 D.32,答案,解析,将四个车位捆绑在一起,看成一个元素, 先排3辆不同型号的车,在三个车位上任意排列,有
17、6(种)排法,再将捆绑在一起的四个车位插入4个空档中,有4种方法, 故共有4624(种)方法.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有 A.34种 B.48种C.96种 D.144种,答案,解析,程序A有 2(种)结果,将程序B和C看作一个元素与除A外的3个元素排列有 48(种), 由分步乘法计数原理,知实验编排共有24896(种)方法.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,4.将A,B,C,D,
18、E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有 A.12种 B.20种C.40种 D.60种,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,5.(2016长沙模拟)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,3,4,5,6,7,8,9,10,11,12,13,14,6.(2017汉中质检)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有 A
19、.24对 B.30对C.48对 D.60对,答案,解析,正方体中共有12条面对角线,任取两条作为一对共有 66(对), 12条对角线中的两条所构成的关系有平行、垂直、成60角. 相对两面上的4条对角线组成的 6(对)组合中, 平行有2对,垂直有4对, 所以所有的平行和垂直共有3 18(对). 所以成60角的有 661848(对).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7.(2016北京西城区期末)现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有_种.(用数字作答),答案,解析,54
20、,第一类,把甲、乙看作一个复合元素,另外3人分成两组,再分配到3个小组中,有 18(种); 第二类,先把另外的3人分配到3个小组,再把甲、乙分配到其中2个小组,有 36(种). 根据分类加法计数原理可得,共有361854(种).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,8.(2017福州质检)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_种.(用数字作答),答案,解析,60,1,2,3,4,5,6,7,8,9,10,11,12,13,14,9.把5件不同产品摆成一排,若产品A与产品B相邻,产品A与产品C不相邻,
21、则不同的摆法有_种.,答案,解析,36,1,2,3,4,5,6,7,8,9,10,11,12,13,14,10.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有_种.,答案,解析,11,把g、o、o、d 4个字母排一列,可分两步进行, 第一步:排g和d,共有 种排法; 第二步:排两个o.共一种排法, 所以总的排法种数为 12.其中正确的有一种, 所以错误的共有 112111(种).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,11.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有_种.(用数字作答),480,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,解答,12.(2017青岛月考)2016年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10 000个号码中选择.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金猴卡”,享受一定优惠政策.如后四位数为“2663”,“8685”为“金猴卡”,求这组号码中“金猴卡”的张数.,1,2,3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影剪辑技巧的历史演变-全面剖析
- 防腐木外墙板工程施工方案
- 信息技术高一信息获取
- 机械与人复习中考总复习
- 触觉反馈书写笔企业制定与实施新质生产力战略研究报告
- 跨境广告与执行服务行业跨境出海战略研究报告
- 龙舟竞渡赛行业跨境出海战略研究报告
- 英语演讲俱乐部行业跨境出海战略研究报告
- 跨文化交流与国际视野培训行业跨境出海战略研究报告
- 花卉摄影书籍出版行业深度调研及发展战略咨询报告
- 车床教学讲解课件
- 政策目标确立和方案制定概述课件
- 六年级下册英语课件-Unit 4 Lesson 23 Good-bye-冀教版(共19张PPT)
- 硬笔书法全册教案共20课时
- 张波-超高温陶瓷课件
- 特洛伊战争(英文版)
- 近代以来广州外贸产业的发展历程
- DBJ04-T 410-2021城市停车场(库)设施配置标准
- 车站主体结构模板支架专项施工方案--终稿(专家意见修改的)-副本
- 保洁岗位培训
- 丽声北极星自然拼读绘本第二级 Pad, Pad, Pad! 课件
评论
0/150
提交评论