



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元差分方程根的判别式与根和系数的关系。一、知识要点:1,一元二次方程ax2 bx c=0(a0)根的判别式用于确定一元二次方程的根。即方程式的实数根;方程有实数根。方程式没有实数根。2,(1)一元二次方程ax2 bx c=0(a0)的两个实数根为x1,x2时,x1 x2=,x1x2=。(2)以两个数字x1,x2为根的一元二次方程(二次项系数1)。二、案例分析:一元二次方程根的判别式。基础例1,在不求解方程的情况下,判断X的方程(6m-1)x2 6mx 2=0的根情况。跟踪练习1、不理解判断以下方程根的方程。(1)2x 2 3x-4=0(2)3x 2 x 5=0(4)7x 2(M5)x m-6
2、=0范例2,X的方程式m2x2 (2m 1)x 1=0具有两条实数根时,取得M的值范围。跟踪练习知道x的方程式(m-1)x2 2(m 2)x m=0,根据以下条件得出实数m的值范围:(1)有两个不相等的实数根。(2)有两个相同的实数根。(3)有两个错误的根源。(4)没有失误的根源。(5)有实数根。扩大研究范例3,已知:方程式x2-2ax a2-a-1=0具有两个实数根,因此进行了简化。跟踪练习已知x的方程有两个不相等的实数根。(1)求m的值范围。(2)简化。示例4,已知的A、B和C分别是ABC的三条边的长度,X的二次表达式2ax2 2bx c=0具有两个相同的实数根。B=90O时,请判断ABC
3、的外观。示例5,已知x2 2x=m-1没有实数根。x2 mx=1-2m必须具有两个不相等的实数根。同步练习: (期中考试链接)1,(2009上海市金山)以下的一元二次方程没有实数解的是()a,x2-2x-1=0B,(x-1)(x-3)=0C,x2-2=0D,x2 x 1=02,(2008四川省)x的方程式x2-(2k-1)x k2=0已知有两个不相等的实数根时,k的最大整数值为()a、-2B、-1C、0D、13,(2009北京市石景山)x的方程式2x2-ax a-2=0具有两个相同的实数根,则a的值为:已知4,(2008天津市)X的一元二次方程(m-2)2x2 (2m 1)x 1=0具有两个不
4、相等的实数根。m的范围为:5,(2008浙江省宁波市)已知:x的方程式x2-2(m 1)x m2=0(1) m牙齿取任何值时,方程式有两个实数根。(2) M牙齿选择合适的整数,使方程有两个不相等的实数根,得到两个根。一元二次方程根与系数的关系范例1,x1,x2是方程式x2-6x 3=0的两个根,使用根和系数的关系取得各种值,例如:(1)x1x 2(2)x1x 2(3)x12x 22(4)(5)| x1-x2 |跟踪练习方程2x2-2x-1=0的两个不理解,方程的话, =, =,22=,=,=,(-1)(-)示例2,已知方程2x2 kx-8=0的根之一是求另一根和K的值。跟踪练习已知一元二次方程
5、x2 4x-m=0的根之一为,另一个为m=。范例3,X的方程式2x2-mx-2m 1=0已知的两个实数的平方和取得M的值。跟踪练习1,(2007重庆市)x的一元二次方程x2 (2m-3)x-m2=0已知的两个不相等实数根是,满足,m的值。2,已知方程式x2 2(m-2)x m2 4=0具有两个实数根,牙齿两个实数根的平方和比两个实数根的乘积大21m。例4,已知一元二次方程的根为3,-4。求牙齿方程。跟踪练习已知一元二次方程的根为-1,2,求出牙齿方程。例5,(2006青岛市)2 -1=0,2 -1=0, 已知的情况下,的值为:同步练习:1,(2009兰州)x1,x2表示方程式x2 6x 3=0的两个实数根,则值为。2,(2008成都市)已知x=1是x的一元二次方程2x2 kx-1=0的根,实数k的值为。3,(2007禁酒)方程x2 x-2=0的两个根为,对于,(-1)(-1)的值相同。4.已知关于x的方程x2-4x c=0的根。c的值为。5.如果方程组解是某一一元差分方程的两个根,那么牙齿一元差分方程是。6,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业物业管理委托合同
- 乳胶漆粉刷施工合同协议书
- 高中数学新课标学案:第课时条件排列
- 门脸租户转让合同范本
- 和艺人的合同范本
- 汽车分期合同范本
- 库存打折销售合同范本
- 《五四爱国运动和中国共产党的成立》新民主主义革命的兴起课件-1
- 苏教版小学数学教材解析
- 2025版权普通许可使用合同示例
- 电力出版社材料力学课后习题答案
- 医院食堂运营食堂餐饮服务投标方案(技术标)
- 岗位调动确认书
- 《职场解压与情绪》课件
- 《银行保险机构公司治理准则》解读
- 中外设计史复习题
- 全国高中青年数学教师优质课大赛一等奖《导数的概念》课件
- 肾上腺疾病诊治指南
- 学习解读2023年新制订的外国国家豁免法课件
- DB42-T 1969-2023 困境儿童家庭监护能力评估
- 沙漠之心(2009新疆中考记叙文阅读试题含答案)
评论
0/150
提交评论