




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章,导数及其应用,第43讲,导数的概念及运算,导数的定义,本例求导方法简记为:一差、二化、三极限求函数在一点处的导数,一般是先求出函数的导数,再计算这点的导数值,点评,导数的几何意义,【例2】 (1)已知曲线y1/3x3在P点处的切线方程为12x3y160,求点P的坐标; (2)求过点P(3,8)且与抛物线yx2相切的直线方程,(2)因为点P不在抛物线上,故设抛物线上点A(xA,yA)处的切线方程为yyAf (xA)(xxA), 即yxA22xA(xxA),所以y2xAx xA2. 因为点P(3,8)在该直线上, 所以xA2 6xA80,解得xA2或xA4. 所以过点P(3,8)且与抛物线
2、yx2相切的直线方程为4xy40或8xy160.,函数在点(x0,y0)处的导数是函数图象在点(x0,y0)处切线的斜率已知切点求切线方程与已知切线方程求切点坐标是两个不同的问题,前者直接应用导数的几何意义,后者以导数的几何意义为基础,设出切点,写出切线方程,由于两切线是同一条直线,对应的系数相等,从而求出切点这是本题第(1)问的解题思想;第(2)问是相近的问题,当切线过曲线外一点时,处理方法还是寻找切点,点评,【变式练习2】 (1)若曲线yx21上点P处的切线与曲线y2x21也相切,求点P的坐标 (2)求过点P(0,2)且与曲线y2xx3相切的直线方程,(2)设曲线上点A(x0,y0)处的切
3、线方程为 yy0f (x0)(xx0), 即y(2x0 x03)(23 x02)(xx0), 即y(23 x02)x2 x03 . 因为点P(0,2)在该直线上,所以x03 1,则x01,所以切点的坐标为A(1,1) 所以过点P(0,2)且与曲线y2xx3相切的直线方程为y1(x1),即xy20.,导数的物理意义,【例3】 质点作直线运动,起点为(0,0),路程s是时间t的二次函数,且其图象过点(1,6),(2,16) (1)求质点在t2秒时的瞬时速度; (2)求质点运动的加速度,函数的导数的物理意义:位移函数对时间的导数等于速度,速度函数对时间的导数等于加速度一般设位移是时间的函数ss(t)
4、,则ss(t)v(t)是速度函数,而vv(t)的导数vv(t)a(t)是加速度函数,点评,【变式练习3】,导数的基本应用,【例4】,求曲线的切线的关键是找出切点,要注意区分切线所经过的点是不是切点本题切线经过的点(1,1)不是切点,因此先要假设切点,再求出切线方程,然后由点(1,1)在曲线的切线上,求出a的值,点评,【变式练习4】,1.曲线y2xlnx在点(1,2)处的切线方程是_,xy10,2.抛物线y4x2上到直线y2x4的距离最短的点P的坐标是_.,3.已知f(x)x22xf (1),则f (0)_.,【解析】因为f (x)2x2f (1), 令x1得f (1)2,所以f (0)2f (
5、1)4.,4,4.已知函数f(x)2x3ax与g(x)bx2c的图象都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式,【解析】因为f(x)与g(x)的图象都过点P(2,0), 所以a8,4bc0,所以f(x)2x38x. 又g(x)2bx,f (x)6x28, 而f(x)与g(x)在点P处有公共的切线, 所以g(2)f (2),即2b26228,得b4. 所以c16,所以g(x)4x216. 综上可知,f(x)2x38x,g(x)4x216.,(3)f (x0)是在xx0处的一个局部性质,它是一个确定的极限值 (4)求函数在xx0处导数的方法: 求函数的改变量yf(x0 x)f(x0);,2导数的物理意义 如果yf(x)表示位移s对时间t的函数,则其在tt0处的导数的意义是物体在时刻tt0时的瞬时速度vs(t0),3导函数 函数yf(x)在区间(a,b)内每一点的导数都存在,则函数yf(x)在(a,b)内可导,其导数也是(a,b)上的函数,称为yf(x)的导函数,记为f (x)函数yf(x)的导函数f (x)在xx0处的函数值f (x0)就是f(x)在x0处的导数,即f (x0)f (x)|xx0(注意并非所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广深铁路股份2024年度社会责任报告-ESG
- 2025游泳池防腐施工合同
- 语言表达的修辞解码知到课后答案智慧树章节测试答案2025年春湘潭大学
- 2025ss房屋装修合同书样本
- 2024年自然资源部第一海洋研究所招聘工作人员真题
- 2024年长沙县中医院招聘专业技术人员真题
- 2024年盐城市卫生健康委直属事业单位招聘专业技术人员真题
- 2024年通山县财政局所属事业单位招聘工作人员真题
- 2025劳动合同书模板2
- 贵港市养牛合同范本
- 山东省青岛市市北区2023-2024学年九年级上学期11月期中数学试题
- 气体检测记录表
- 3.7 移动终端应用安全
- 2021年北京市基础教育教学成果奖申报书
- 《遥感导论》全套课件
- 煤质化验工安全操作规程
- 医疗废物处置流程图3个
- 飞行器总体设计(二)
- 连续结晶器 奥斯陆连续结晶器
- 社区网格员通用安全知识培训课件
- 奥迪A7L汽车说明书
评论
0/150
提交评论