版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计算机组成原理,第一章 计算机系统概论 第二章 运算方法和运算器 第三章 存储系统 第四章 指令系统 第五章 中央处理器 第六章 总线系统 第七章 外围设备 第八章 输入输出系统 第九章 并行组织,目录, 上一讲回顾,1. 溢出及其检测方法 2.基本的二进制加/减法器(难点,熟练掌握) 理解并熟练掌握图2.3 3.十进制加法器 4.原码并行乘法(难点,掌握) 理解并掌握图2.6,2.2.4 基本的二进制加法/减法器,全加器的表达式为: Si = Ai Bi Ci Ci+1 = AiBi + BiCi + AiCi 一位全加器内部逻辑图,2.2.4 基本的二进制加法/减法器,2.3.1 原码乘法
2、 不带符号的阵列乘法器 设有两个不带符号的二进制整数: Aa m1 a1a0 Bb n1 b1b0 在二进制乘法中,被乘数A与乘数B相乘,产生mn位乘积P: Pp mn1 p1p0 实现这个乘法过程所需要的操作和人们的习惯方法非常类似:,图2.5 mn位不带符号数的阵列乘法器逻辑框图,3.带符号的阵列乘法器,(1) 对2求补器电路 我们先来看看算术运算部件设计中经常用到的求补电路。一个具有使能控制的二进制对2求补,其逻辑表达式如下: C10, CiaiCi1 ai*aiECi1,0in,在对2求补时,要采用按位扫描技术来执行所需要的求补操作。令Aana1a0是给定的(n1)为带符号的数,要求确
3、定它的补码形式。进行求补的方法就是从数的最右端a0开始,由右向左,直到找出第一个“1”,例如ai1, 0in。这样,ai以左的每一个输入位都求反,即1变0,0变1。最右端的起始链式输入C1必须永远置成“0”。当控制信号线E为“1”时,启动对2求补的操作。当控制信号线E为“0”时,输出将和输入相等。显然,我们可以利用符号位来作为控制信号。 例如,在一个4位的对2求补器中,如果输入数为1010,那么输出数应是0110,其中从右算起的第2位,就是所遇到的第一个“1”的位置。用这种对2求补器来转换一个(n1)为带符号的数,所需的总时间延迟为 tTCn2T5T(2n5)T(2.28) 其中每个扫描级需2
4、T延迟,而5T则是由于“与”门和“异或”门引起的。,(2) 带符号的阵列乘法器 通常,把包括这些求补级的乘法器又称为符号求补的阵列乘法器。在这种逻辑结构中,共使用三个求补器。其中两个算前求补器的作用是:将两个操作数A和B在被不带符号的乘法阵列(核心部件)相乘以前,先变成正整数。而算后求补器的作用则是:当两个输入操作数的符号不一致时,把运算结果变成带符号的数。,设A=anan-1a1a0和B=bnbn-1b1b0均为用定点表示的(n1)位带符号整数。在必要的求补操作以后,A和B的码值输送给nn位不带符号的阵列乘法器,并由此产生2n位真值乘积: ABPp2n1p1p0 p2nanbn 其中P2n为
5、符号位。 图2.7所示的带求补级的阵列乘法器既适用于原码乘法,也适用于间接的补码乘法。不过在原码乘法中,算前求补和算后求补都不需要,因为输入数据都是立即可用的。而间接的补码阵列乘法所需要增加的硬件较多。,例17 设15,13,用带求补器的原码阵列乘法器求出乘积? 解: 本题实际上就是将数值部分相乘后加上符号位的积的到。其中数值部分用绝对值计算。 例18 设 15,13,用带求补器的补码阵列乘法器求出乘积?,1.补码与真值得转换公式 补码乘法因符号位参与运算,可以完成补码数的“直接”乘法,而不需要求补级。这种直接的方法排除了较慢的对2求补操作,因而大大加速了乘法过程。 首先说明与直接的补码乘法相
6、联系数学特征。对于计算补码数的数值来说,一种较好的表示方法是使补码的位置数由一个带负权的符号和带正权的系数。今考虑一个定点补码整数N补an1an2a1a0,这里an1是符号位。根据N补的符号,补码数N补和真值N的关系可以表示成:,2.3.2 补码乘法,an-1=0(N补为正,an-1=1(N补为负,如果我们把负权因数2n1强加到符号位an1上,那么就可以把上述方程组中的两个位置表达式合并成下面的统一形式: n2 N an12n1ai2i i=0 式2.29两边同乘以-1,可以证明-N补可用下式计算: n2 N (1-an1)2n1(1-ai)2i +1 i0,例19 已知: N补 01101,
7、N补10011,求N补,N补具有的数值。 解: 代入上面公式即可求得。,常规的一位全加器可假定它的3个输入和2个输出都是正权。这种加法器通过把正权或负权加到输入/输出端,可以归纳出四类加法单元。如右表,0类全加器没有负权输入;1类全加器有1个负权输入和2个正权输入;依次类推。,2.一般化的全加器形式,表2.4 描述四类一般化全加器的真值表,常规的一位全加器可假定它的3个输入和2个输出都是正权。这种加法器通过把正权或负权加到输入/输出端,可以归纳出四类加法单元。如右表,0类全加器没有负权输入;1类全加器有1个负权输入和2个正权输入;依次类推。 对0类、3类全加器而言有: 对1类、2类全加器,则有
8、 注意,0类和3类全加器是用同一对逻辑方程来表征的,它和普通的一位全加器(0类)是一致的。这是因为3类全加器可以简单地把0类全加器的所有输入输出值全部反向来得到,反之亦然。 1类和2类全加器之间也能建立类似的关系。由于逻辑表达式具有两级与一或形式,可以用“与或非”门来实现,延迟时间为2T。,利用混合型的全加器就可以构成直接补码数阵列乘法器。设被乘数A和乘数B是两个5位的二进制补码数,即 A(a4)a3a2a1a0 B(b4)a3a2a1a0 它们具有带负权的符号位a4和b4,并用括号标注。如果我们用括号来标注负的被加项,例如(aibj),那么A和B相乘过程中所包含的操作步骤如下面矩阵所示:,3.直接补码阵列乘法器,其中使用不同的逻辑符号来代表0类、1类、2类、3类全加器。2类和1类全加器具有同样的结构,但是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗保健票据处理办法
- 餐饮业电梯施工安装工程合同
- 智能建筑网线铺设协议
- 科技期刊数字化出版技术指南
- 绿色建筑招投标法规体系精讲
- 城市交通监理管理规范
- 大型设备焊工劳动合同
- 物业维修技术员定向就业
- 船舶制造工程招投标资料模板
- 旅游集团的民主管理
- 山东省滨州市博兴县2024-2025学年九年级上学期11月期中数学试题
- 外立面改造项目脚手架施工专项方案
- 统编版(2024新版)七年级上册道德与法治期中模拟试卷(含答案)
- 【课件】 2024消防月主题培训:全民消防 生命至上
- 山东省自然科学基金申报书-青年基金
- 保安人员配置方案
- 食材配送实施方案(适用于学校、医院、酒店、企事业单位食堂等食材采购)投标方案(技术方案)
- 2024-2030年中国炼化一体化行业风险评估与市场需求前景预测报告
- 期中练习(试题)-2024-2025学年人教PEP版英语六年级上册
- 2024-2025学年五年级科学上册第二单元《地球表面的变化》测试卷(教科版)
- 反恐防暴课件教学课件
评论
0/150
提交评论