版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,行列式主要内容,1.定义,2.性质 5条,3.展开定理,4.几个重要结果,范德蒙行列式,三角形行列式的值等于对角元之乘积,1,行列式的计算方法小结,可从计算方法和行列式特征两个角度总结。,1. 直接用定义(非零元素很少时可用),2. 化三角形行列式法,此法特点:,(2) 灵活性差,死板。,程序化明显,对阶数较低的数字行列式和一些较特殊的 字母行列式适用。,3.降阶法,利用性质,将某行(列)的元尽可能化为0,然后按行(列)展开.,此法灵活多变,易于操作,是最常用的手法。,一.方法,2,*4. 递推公式法 (见附录1),*5、数学归纳法 (见附录2),*6. 加边法(升阶)(见附录3),3,二、
2、特征,1. 奇数阶反对称行列式 的值为零。,. 阶数不算高的数字行列式,可化为三角形行列式或结合展开定理计算.,. 非零元素很少的行列式,可直接用定义或降阶法。,一些特殊行列式的计算(包括一些重要结果),4,为对称行列式,例,例,是反对称行列式,不是反对称行列式,两种重要行列式,5,例,证明奇数阶反对称行列式的值为零。,证,当n为奇数时有,6,例,2. “箭形”行列式 化成三角形行列式,如:练习册P.2 6(2)题,7,例,3. 除对角线以外各行元素对应相同,可化成三角形行列式或箭形行列式,另,可化箭形行列式,8,例,n阶,n-1阶,n-1阶,某行(列)至多有两个非零元素的行列式,可用降 阶法
3、或定义或递推公式法或归纳法,9,5. 各行(列)总和相等的行列式 (赶鸭子法),例 计算行列式,10,*或 y 乘第1列加到后面各列:,*,11,6 范德蒙(Vandermonde)行列式(重要结果),12,例 计算行列式,解 V是 的范德蒙行列式,,故,13,注: 显然,范德蒙行列式,练习,12张,14,将一不含的非零元素化成零,某行可能会出现公因子,提公因子,可降次。,7. 部分对角线上含参数的行列式,例 为何值时,D=0?,15,附录1. 递推公式法,特征:某行(列)至多有两个非零元素。,方法:按此行(列)展开,可能会导出递推公式。,16,例1(另见A26),按第一行展开好,还是按第一列
4、展开好?,17,由此得递推公式:,因此有:,D2=?,解法2:从最后一列开始每列乘以x加到前一列,再按第一列展开。,18,例2,19,由此可得递推公式:,因此有,又因为,故,则,递推公式法的 步骤:,1. 降阶,得到递推公式;,2. 利用高中有关数列的知识,求出行列式 。,20,附录2、数学归纳法,例 证明范德蒙(Vandermonde)行列式,21,证明(数学归纳法),,结论成立。,按第1列展开,22,根据归纳假设有:,综上所述,结论成立 。,23,附录3. 加边法(升阶),要点:将行列式加一行一列,利用所加的一行(列)元素 ,将行列式化成三角形行列式。,例9 用加边法计算,n+1阶,还可用
5、赶鸭子法!,24,将第1行的(-1)倍分别加到第2行,第3行,.,第n+1行得:,(1) 若m=0,则,n+1阶,“箭形”行列式,从加边前的Dn 得出,25,26,综合练习题,2. 用多种方法计算下列行列式,(2).,(3).,(1).,27,3. 计算行列式,设m阶行列式|A|=a, n阶行列式|B|=b,*4. 计算行列式,28,综合练习题解答,因此,因为: 对于任何两个数码 ,在一排列中要么构成逆序,要么不构成逆序.,如:,29,2. (1),解法一:,化成三角形行列式,解法二:把 化成0, 再按第三行展开,30,解法三:,31,(2).计算行列式,解法一:,解法二:,注意:若按图示法计算不易化简。,32,(3). 解法一,33,解法二:用赶鸭子法,提公因子,化三角形行列式或降成二阶,34,3. 计算行列式,设m阶行列式|A|=a, n阶行列式|B|=b,解,将第n+1列作n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书销售合作协议模板
- 买卖夹板合同协议书模板2024年
- 机械设备固定资产清查表
- 无财产无子女离婚协议书的关键要素
- 店铺装修合同协议
- 公司内部借款协议合同
- 授权管理酒店合作协议
- 房屋交易合同的税收问题
- 2024员工聘用合同协议书(27篇)
- 交警宣讲课件教学课件
- 煤矿皮带智能化集控系统PPT教学讲授课件
- 个人财务管理系统的设计与实现--论文
- 分数乘除法整理复习(课堂PPT)
- 杭州会展业发展与对策研究文献综述
- 小学六年级英语上册《Unit 1 How can I get there》教案
- 完整版方法验证报告模板最终
- 电力管道资料表格(共30页)
- 大班科学活动教案《豆豆家族》含PPT课件
- 【精品试卷】部编人教版(统编)一年级上册语文第一单元测试卷含答案
- 金属有机化学ppt课件
- 数学说题稿(共4页)
评论
0/150
提交评论