下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、简单线性规划的应用教学目的:1.能应用线性规划的方法解决一些简单的实际问题2.增强学生的应用意识.培养学生理论联系实际的观点教学重点:求得最优解 教学难点:求最优解是整数解教材分析:线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小教学过程:一、复习引入: 1二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解 3用图解法
2、解决简单的线性规划问题的基本步骤:(1)根据线性约束条件画出可行域(即不等式组所表示的公共区域);(2)设,画出直线;(3)观察、分析,平移直线,从而找到最优解;(4)最后求得目标函数的最大值及最小值4.求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解5判断可行区域的方法: 由于对在直线同一侧的所有点(x,y),把它的坐标(x,y)代入,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断表示直线哪一侧的平面区域.(
3、特殊地,当C0时,常把原点作为此特殊点)二、讲解新课:例1:医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每含5单位蛋白质和10单位铁质,售价3元;乙种原料每含7单位蛋白质和4单位铁质,售价2元。若病人每餐至少需要35单位蛋白质和40单位铁质,试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解:设甲、乙两种原料分别用和,需要的费用为病人第餐至少需要35单位蛋白质,可表示为同理,对铁质的要求可表示为问题成为:在约束条件下求目标函数的最小值作出可行域,令,作直线由图可知,把直线平移至顶点时,取最小值由,元所以用甲种原料,乙种原料,费用最省例2:某厂生产一种产品,其成本为27元/,售
4、价为50元/,生产中,每千克产品产生的污水,污水有两种排放方式:方式一:直接排入河流方式二:经厂内污水处理站处理后排入河流,但受污水处理站技术水平的限制,污水处理率只有,污水处理站最大处理能力是,处理污水的成本是5元/另外,环保部门对排入河流的污水收费标准是元/,且允许该厂排入河流中污水的最大量是,那么,该厂应选择怎样的生产与排污方案,可使其每净收益最大?分析:为了解决问题,首先要搞清楚是什么因素决定收益 净收益 = 售出产品的收入生产费用 其中生产费用包括生产成本、污水处理、排污费等设该厂生产的产量为,直接排入河流的污水为,每小时净收益为元,则(1)售出产品的收入为元/(2)产品成本为元/(
5、3)污水产生量为,污水处理量为,污水处理费为元/(4)污水未处理率为,所以污水处理厂处理后的污水排放量为,环保部门要征收的排污费为元/(5)需要考虑的约束条件是:(1)污水处理能力是有限的,即(2)允许排入河流的污水量也是有限的即解:根据题意,本问题可归纳为:在约束条件下,求目标函数的最大值作出可行域,令作直线,由图可知,平移直线,在可行域中的顶点处,取得最大值由故该厂生产该产品,直接排入河流的污水为时,可使每小时净收益最大,最大值为(元)答:该厂应安排生产该产品,直接排入河流的污水为时,其每小时净收益最大。三、课堂练习:已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西
6、车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?解:设甲煤矿向东车站运万吨煤,乙煤矿向东车站运万吨煤,那么总运费z=x+1.5(200x)+0.8y+1.6(300y)(万元) 即z=7800.5x0.8y.x、y应满足:作出上面的不等式组所表示的平面区域设直线x+y=280与y轴的交点为M,则M(0,280) 把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小
7、点M的坐标为(0,280),甲煤矿生产的煤全部运往西车站、乙煤矿向东车站运280万吨向西车站运20万吨时,总运费最少 四、课堂小结:求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解五、课后作业:1、P109页 B组第2题2、要将甲、乙两种长短不同的钢管截成A、B、C三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示: 规格类型钢管类型A规格B规格C规格甲种钢管214乙种钢管231今需A、B、C三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少解:设需截甲种钢管x根,乙种钢管y根,则作出可行域(如图):目标函数为,作出一组平行直线中(t为参数)经过可行域内的点且和原点距离最近的直线,此直线经过直线4x+y=18和直线x+3y=16的交点A()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业市场竞争力分析与提升服务合同
- 2024年度房地产项目设备采购合同
- 2024年度新建医院医疗设备采购合同2篇
- 2024年度股权转让合同的定价和交割细节
- 2024年度生态环境监测服务合同
- 2024私家车位租赁合同(简易版)
- 2024脚手架工程劳务承包合同
- 2024酒水代理合同范本
- 2024家庭照看老人的保姆雇佣合同
- 车辆抵押借款合同的样本
- (新版)高级考评员职业技能鉴定考试题库(含答案)
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 食品工业技术经济学智慧树知到期末考试答案章节答案2024年西华大学
- 家校携手 同心共育 四年期中考试家长会 课件
- 正确使用网络流行语+课件-2022-2023学年主题班会
- 水污染控制工程课程设计(AAO)
- 工资单模板(样本)之欧阳语创编
- 教育学家、心理学家名言
- 职业技术学院教师教学工作量计算办法(修订)
- (完整版)现在分词作状语练习-含答案
- 医院医疗急救中心设置原则和建设标准
评论
0/150
提交评论