2018版高中数学 第三章 不等式 3.5.2 简单线性规划(一)学案 新人教B版必修5_第1页
2018版高中数学 第三章 不等式 3.5.2 简单线性规划(一)学案 新人教B版必修5_第2页
2018版高中数学 第三章 不等式 3.5.2 简单线性规划(一)学案 新人教B版必修5_第3页
2018版高中数学 第三章 不等式 3.5.2 简单线性规划(一)学案 新人教B版必修5_第4页
2018版高中数学 第三章 不等式 3.5.2 简单线性规划(一)学案 新人教B版必修5_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.5.2简单线性规划(一)学习目标1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题思考已知x,y满足条件该不等式组所表示的平面区域如图,求2x3y的最大值以此为例,尝试通过下列问题理解有关概念知识点一线性约束条件在上述问题中,不等式组是一组对变量x、y的约束条件,这组约束条件都是关于x、y的_次不等式,故又称线性约束条件知识点二目标函数在上述问题中,是要研究的目标,称为目标函数因为它是关于变量x、y的_次解析式,这样的目标函数称为线性目标函数知识点三线性规划问题一般地,在线性约束条件下求_的最

2、大值或最小值问题,统称为线性规划问题知识点四可行解、可行域和最优解满足线性约束条件的解(x,y)叫做可行解由所有可行解组成的集合叫做可行域其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解在上述问题的图中,阴影部分叫_,阴影区域中的每一个点对应的坐标都是一个_,其中能使式取最大值的可行解称为_类型一最优解问题命题角度1唯一最优解例1已知x,y满足约束条件该不等式组所表示的平面区域如图,求2x3y的最大值反思与感悟(1)图解法是解决线性规划问题的有效方法,基本步骤:确定线性约束条件,线性目标函数;作图画出可行域;平移平移目标函数对应的直线zaxby,看它经过哪个点(或哪些点)时最

3、先接触可行域或最后离开可行域,确定最优解所对应的点的位置;求值解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值跟踪训练1已知1xy5,1xy3,求2x3y的取值范围命题角度2最优解不唯一例2已知x,y满足约束条件若目标函数zaxy的最大值有无数个最优解,求实数a的值反思与感悟当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解跟踪训练2给出平面可行域(如图),若使目标函数zaxy取最大值的最优解有无穷多个,则a等于()A. B. C4 D.类型二生活中的线性规划问题例3营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水

4、化合物,0.06 kg的蛋白质,0.06 kg的脂肪,1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg 脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B各多少kg?将已知数据列成下表:食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA0.1050.070.14B0.1050.140.07反思与感悟(1)目标函数zaxby(b0)在y轴上的截距是关于z的正比例函数,其单调性取决于b的正负当b0时,截距越大,z就越大;

5、当b0时,截距越小,z就越大(2)最优解和目标函数与边界函数的斜率大小有关跟踪训练3某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为_货物体积重量利润(m3/箱)(50 kg/箱)(百元/箱)甲5220乙4510托运限制24131若变量x,y满足约束条件则x2y的最大值是()A B0 C. D.2设变量x,y满足约束条件则目标函数z2x3y的最小值为()A6 B7 C8 D233在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数zxay取得最小值的最优解有无数个,则a的值为()A3 B

6、3 C1 D14已知实数x、y满足约束条件则z2x4y的最大值为_1用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)作图画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;(3)平移将直线l平行移动,以确定最优解所对应的点的位置;(4)求值解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值2作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解3在解决与线性规划相关的问题时,首先考虑目标函数的几何意义

7、,利用数形结合方法可迅速解决相关问题答案精析问题导学知识点一一知识点二一知识点三线性目标函数知识点四可行域可行解最优解题型探究类型一命题角度1例1解设区域内任一点P(x,y),z2x3y,则yx,这是斜率为定值,在y轴上的截距为的直线,如图由图可以看出,当直线yx经过直线x4与直线x2y80的交点M(4,2)时,截距的值最大,此时2x3y14.跟踪训练1解作出二元一次不等式组所表示的平面区域(如图)即为可行域设z2x3y,变形得yxz,则得到斜率为,且随z变化的一组平行直线z是直线在y轴上的截距,当直线截距最大时,z的值最小,由图可知,当直线z2x3y经过可行域上的点A时,截距最大,即z最小解

8、方程组得A的坐标为(2,3),zmin2x3y22335.当直线z2x3y经过可行域上的点B时,截距最小,即z最大解方程组得B的坐标为(2,1)zmax2x3y223(1)7.52x3y7,即2x3y的取值范围是5,7命题角度2例2解约束条件所表示的平面区域如图,由zaxy,得yaxz.当a0时,最优解只有一个,过A(1,1)时取得最大值;当a0时,当yaxz与xy2重合时,最优解有无数个,此时a1;当a0时,当yaxz与xy0重合时,最优解有无数个,此时a1.综上,a1或a1.跟踪训练2B类型二例3解设每天食用x kg食物A,y kg食物B,总成本为z,那么目标函数为z28x21y.作出二元一次不等式组所表示的平面区域,把目标函数z28x21y变形为yx,它表示斜率为,且随z变化的一组平行直线,是直线在y轴上的截距,当截距最小时,z的值最小如图可见,当直线z28x21y经过可行域上的点M时,截距最小,即z最小解方程组得M点的坐标为.所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物Akg,食物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论